TY - THES A1 - Priegnitz, Mike T1 - Development of geophysical methods to characterize methane hydrate reservoirs on a laboratory scale T1 - Entwicklung geophysikalischer Methoden zur Charakterisierung von Methanhydrat-Reservoiren im Labormaßstab N2 - Gashydrate sind kristalline Feststoffe bestehend aus Wasser und Gasmolekülen. Sie sind stabil bei erhöhten Drücken und niedrigen Temperaturen. Natürliche Hydratvorkommen treten daher an Kontinentalhängen, in Permafrostböden und in tiefen Seen sowie Binnenmeeren auf. Bei der Hydratbildung orientieren sich die Wassermoleküle neu und bilden sogenannte Käfigstrukturen, in die Gas eingelagert werden kann. Aufgrund des hohen Drucks bei der Hydratbildung können große Mengen an Gas in die Hydratstruktur eingebaut werden. Das Volumenverhältnis von Wasser zu Gas kann dabei bis zu 1:172 bei 0°C und Atmosphärendruck betragen. Natürliche Gashydrate enthalten hauptsächlich Methan. Da Methan sowohl ein Treibhausgas als auch ein Brenngas ist, stellen Gashydrate gleichermaßen eine potentielle Energieressource sowie eine mögliche Quelle für Treibhausgase dar. Diese Arbeit untersucht die physikalischen Eigenschaften von Methanhydrat gesättigten Sedimentproben im Labormaßstab. Dazu wurde ein großer Reservoirsimulator (LARS) mit einer eigens entwickelten elektrischen Widerstandstomographie ausgerüstet, die das erste Mal an hydratgesättigten Sedimentproben unter kontrollierten Temperatur-, Druck-, und Hydratsättigungsbedingungen im Labormaßstab angewendet wurde. Üblicherweise ist der Porenraum von (marinen) Sedimenten mit elektrisch gut leitendem Salzwasser gefüllt. Da Hydrate einen elektrischen Isolator darstellen, ergeben sich große Kontraste hinsichtlich der elektrischen Eigenschaften im Porenraum während der Hydratbildung und -zersetzung. Durch wiederholte Messungen während der Hydraterzeugung ist es möglich die räumliche Widerstandsverteilung in LARS aufzuzeichnen. Diese Daten bilden in der Folge die Grundlage für eine neue Auswerteroutine, welche die räumliche Widerstandsverteilung in die räumliche Verteilung der Hydratsättigung überführt. Dadurch ist es möglich, die sich ändernde Hydratsättigung sowohl räumlich als auch zeitlich hoch aufgelöst während der gesamten Hydraterzeugungsphase zu verfolgen. Diese Arbeit zeigt, dass die entwickelte Widerstandstomographie eine gute Datenqualität aufwies und selbst geringe Hydratsättigungen innerhalb der Sedimentprobe detektiert werden konnten. Bei der Umrechnung der Widerstandsverteilung in lokale Hydrat-Sättigungswerte wurden die besten Ergebnisse mit dem Archie-var-phi Ansatz erzielt, der die zunehmende Hydratphase dem Sedimentgerüst zuschreibt, was einer Abnahme der Porosität gleichkommt. Die Widerstandsmessungen zeigten weiterhin, dass die schnelle Hydraterzeugung im Labor zur Ausbildung von kleinen Hydratkristallen führte, die dazu neigten, zu rekristalliesieren. Es wurden weiterhin Hydrat-Abbauversuche durchgeführt, bei denen die Hydratphase über Druckerniedrigung in Anlehnung an den 2007/2008 Mallik Feldtest zersetzt wurde. Dabei konnte beobachtet werden, dass die Muster der Gas- undWasserflussraten im Labor zum Teil gut nachgebildet werden konnten, jedoch auch aufbaubedingte Abweichungen auftraten. In zwei weiteren Langzeitversuchen wurde die Realisierbarkeit und das Verhalten bei CO2-CH4-Hydrat Austauschversuchen in LARS untersucht. Das tomographische Messsystem wurde dabei genutzt um während der CH4 Hydrat Aufbauphase die Hydratverteilung innerhalb der Sedimentprobe zu überwachen. Im Zuge der anschließenden CO2-Injektion konnte mithilfe der Widerstandstomographie die sich ausbreitende CO2-Front überwacht und der Zeitpunkt des CO2 Durchbruchs identifiziert werden. N2 - Gas hydrates are crystalline solids composed of water and gas molecules. They are stable at elevated pressure and low temperatures. Therefore, natural gas hydrate deposits occur at continental margins, permafrost areas, deep lakes, and deep inland seas. During hydrate formation, the water molecules rearrange to form cavities which host gas molecules. Due to the high pressure during hydrate formation, significant amounts of gas can be stored in hydrate structures. The water-gas ratio hereby can reach up to 1:172 at 0°C and atmospheric pressure. Natural gas hydrates predominantly contain methane. Because methane constitutes both a fuel and a greenhouse gas, gas hydrates are a potential energy resource as well as a potential source for greenhouse gas. This study investigates the physical properties of methane hydrate bearing sediments on a laboratory scale. To do so, an electrical resistivity tomography (ERT) array was developed and mounted in a large reservoir simulator (LARS). For the first time, the ERT array was applied to hydrate saturated sediment samples under controlled temperature, pressure, and hydrate saturation conditions on a laboratory scale. Typically, the pore space of (marine) sediments is filled with electrically well conductive brine. Because hydrates constitute an electrical isolator, significant contrasts regarding the electrical properties of the pore space emerge during hydrate formation and dissociation. Frequent measurements during hydrate formation experiments permit the recordings of the spatial resistivity distribution inside LARS. Those data sets are used as input for a new data processing routine which transfers the spatial resistivity distribution into the spatial distribution of hydrate saturation. Thus, the changes of local hydrate saturation can be monitored with respect to space and time. This study shows that the developed tomography yielded good data quality and resolved even small amounts of hydrate saturation inside the sediment sample. The conversion algorithm transforming the spatial resistivity distribution into local hydrate saturation values yielded the best results using the Archie-var-phi relation. This approach considers the increasing hydrate phase as part of the sediment frame, metaphorically reducing the sample’s porosity. In addition, the tomographical measurements showed that fast lab based hydrate formation processes cause small crystallites to form which tend to recrystallize. Furthermore, hydrate dissociation experiments via depressurization were conducted in order to mimic the 2007/2008 Mallik field trial. It was observed that some patterns in gas and water flow could be reproduced, even though some setup related limitations arose. In two additional long-term experiments the feasibility and performance of CO2-CH4 hydrate exchange reactions were studied in LARS. The tomographical system was used to monitor the spatial hydrate distribution during the hydrate formation stage. During the subsequent CO2 injection, the tomographical array allowed to follow the CO2 migration front inside the sediment sample and helped to identify the CO2 breakthrough. KW - hydrate KW - Electrical Resistivity Tomography (ERT) KW - geophysics KW - Gashydrate KW - Elektrische Widerstandstomographie (ERT) KW - Geophysik Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-89321 ER - TY - THES A1 - Pan, Mengdi T1 - Systematic studies on the thermodynamic properties of gas hydrates and their formation/dissociation/transformation behaviors T1 - Systematische Untersuchungen zu den thermodynamischen Eigenschaften von Gashydraten und ihrem Bildungs-/Dissoziations-/Umwandlungsverhalten N2 - Gas hydrates are ice-like crystalline compounds made of water cavities that retain various types of guest molecules. Natural gas hydrates are CH4-rich but also contain higher hydrocarbons as well as CO2, H2S, etc. They are highly dependent of local pressure and temperature conditions. Considering the high energy content, natural gas hydrates are artificially dissociated for the production of methane gas. Besides, they may also dissociate in response to global warming. It is therefore crucial to investigate the hydrate nucleation and growth process at a molecular level. The understanding of how guest molecules in the hydrate cavities respond to warming climate or gas injection is also of great importance. This thesis is concerned with a systematic investigation of simple and mixed gas hydrates at conditions relevant to the natural hydrate reservoir in Qilian Mountain permafrost, China. A high-pressure cell that integrated into the confocal Raman spectroscopy ensured a precise and continuous characterization of the hydrate phase during formation/dissociation/transformation processes with a high special and spectral resolution. By applying laboratory experiments, the formation of mixed gas hydrates containing other hydrocarbons besides methane was simulated in consideration of the effects from gas supply conditions and sediments. The results revealed a preferential enclathration of different guest molecules in hydrate cavities and further refute the common hypothesis of the coexistence of hydrate phases due to a changing feed gas phase. However, the presence of specific minerals and organic compounds in sediments may have significant impacts on the coexisting solid phases. With regard to the dissociation, the formation damage caused by fines mobilization and migration during hydrate decomposition was reported for the first time, illustrating the complex interactions between fine grains and hydrate particles. Gas hydrates, starting from simple CH4 hydrates to binary CH4—C3H8 hydrates and multi-component mixed hydrates were decomposed by thermal stimulation mimicking global warming. The mechanisms of guest substitution in hydrate structures were studied through the experimental data obtained from CH4—CO2, CH4—mixed gas hydrates and mixed gas hydrates—CO2 systems. For the first time, a second transformation behavior was documented during the transformation process from CH4 hydrates to CO2-rich mixed hydrates. Most of the crystals grew or maintained when exposed to CO2 gas while some others decreased in sizes and even disappeared over time. The highlight of the two last experimental simulations was to visualize and characterize the hydrate crystals which were at different structural transition stages. These experimental simulations enhanced our knowledge about the mixed gas hydrates in natural reservoirs and improved our capability to assess the response to global warming. N2 - Gashydrate sind eisähnliche, kristalline Verbindungen bestehend aus Wasserkäfigen, in denen verschiedene Arten von Gastmolekülen eingeschlossen sind. Natürliche Gashydrate sind CH4-reich, enthalten aber auch höhere Kohlenwasserstoffe sowie CO2, H2S usw. Sie sind stark von den lokalen Druck- und Temperaturbedingungen abhängig. Aufgrund ihres hohen Energiegehalts werden natürliche Gashydrate zur Produktion von Methangas kontrolliert zersetzt. Sie können sich aber auch als Reaktion auf die globale Erwärmung zersetzen. Daher ist es von entscheidender Bedeutung, den Hydratnukleation und des Wachstumsprozesses auf molekularer Ebene zu verstehen. Es ist auch von großer Bedeutung zu klären, wie die Gastmoleküle in den Hydratkäftigen auf die Erderwärmung oder die Gasinjektion antworten. Diese Arbeit beschäftigt sich mit einer systematischen Untersuchung von einfachen und gemischten Gashydraten unter Bedingungen, die für die natürlichen Hydratvorkommen im Qilian Mountain Permafrost, China, relevant sind. Eine in die konfokale Raman-Spektroskopie integrierte Hochdruckzelle gewährleistet eine präzise und kontinuierliche Charakterisierung der Hydratphase während des Bildungs-/Dissoziations-/Umwandlungsprozesses mit hoher örtlicher und spektraler Auflösung. Anhand von Laborversuchen wurde der Entstehungsprozess von gemischten Gashydraten unter Berücksichtigung der Auswirkungen unterschiedliches Gaszufuhr und Sedimenten simuliert. Die Ergebnisse zeigten eine bevorzugte Einlagerung verschiedener Gastmoleküle in die Hydratkäfige und widerlegen die gängige Hypothese der Bildung koexistierender Hydratphasen aufgrund einer sich ändernden Gasphase. Das Vorhandensein bestimmter Mineralien und organischer Verbindungen in Sedimenten kann ebenfalls erhebliche Auswirkungen auf die koexistierenden festen Phasen haben. Bezüglich der Hydratzersetzung konnte im Rahmen dieser Arbeit erstmals über die Formationsschädigung durch Feinkornmobilisierung und -migration beim Hydratabbau berichtet werden, was die komplexen Wechselwirkungen zwischen feinen Sedimentkörnern und Hydratpartikeln verdeutlicht. Gashydrate, angefangen von einfachen CH4-Hydraten über binäre CH4-C3H8-Hydrate bis hin zu Mehrkomponenten-Mischhydraten, wurden durch thermische Stimulation zersetzt, um die Reaktion auf die globale Erwärmung nachzuahmen. Die Mechanismen der Substitution der Gasmoleküle in Hydratstrukturen wurden anhand der experimentellen Daten von CH4-CO2-, CH4-Mischgashydraten und Mischgashydraten-CO2-Systemen untersucht. Erstmals wurde ein zweites Umwandlungsverhalten während des Umwandlungsprozesses von CH4-Hydraten zu CO2-reichen Mischhydraten dokumentiert. In den meisten Fällen wird das Modell des Schrumpfenden Kerns (Shrinking-core-model) unterstützt, während in einigen anderen Fällen die Kristalle mit konstanter Geschwindigkeit umwandelten. Der Höhepunkt der beiden letzten experimentellen Simulationen war die Visualisierung und Charakterisierung von Hydratkristallen, die sich in verschiedenen strukturellen Übergangsstadien befanden. Diese experimentellen Simulationen erweiterten unser Wissen über gemischte Gashydrate in natürlichen Lagerstätten und verbesserten unsere Fähigkeit, die Reaktion auf die globale Erwärmung zu bewerten. KW - gas hydrates KW - Raman spectroscopy KW - thermodynamic and kinetic properties KW - Gashydrate KW - Raman-Spektroskopie KW - thermodynamische und kinetische Eigenschaften Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-554760 ER -