TY - THES A1 - Blenau, Wolfgang T1 - Aminerge Signaltransduktion bei Insekten T1 - Aminergic signal transduction in insects N2 - Biogene Amine sind kleine organische Verbindungen, die sowohl bei Wirbeltieren als auch bei Wirbellosen als Neurotransmitter, Neuromodulatoren und/oder Neurohormone wirken können. Sie bilden eine bedeutende Gruppe von Botenstoffen und entfalten ihre Wirkungen über die Bindung an eine bestimmte Klasse von Rezeptorproteinen, die als G-Protein-gekoppelte Rezeptoren bezeichnet werden. Bei Insekten gehören zur Substanzklasse der biogenen Amine die Botenstoffe Dopamin, Tyramin, Octopamin, Serotonin und Histamin. Neben vielen anderen Wirkung ist z.B. gezeigt worden, daß einige dieser biogenen Amine bei der Honigbiene (Apis mellifera) die Geschmacksempfindlichkeit für Zuckerwasser-Reize modulieren können. Ich habe verschiedene Aspekte der aminergen Signaltransduktion an den „Modellorganismen“ Honigbiene und Amerikanische Großschabe (Periplaneta americana) untersucht. Aus der Honigbiene, einem „Modellorganismus“ für das Studium von Lern- und Gedächtnisvorgängen, wurden zwei Dopamin-Rezeptoren, ein Tyramin-Rezeptor, ein Octopamin-Rezeptor und ein Serotonin-Rezeptor charakterisiert. Die Rezeptoren wurden in kultivierten Säugerzellen exprimiert, um ihre pharmakologischen und funktionellen Eigenschaften (Kopplung an intrazelluläre Botenstoffwege) zu analysieren. Weiterhin wurde mit Hilfe verschiedener Techniken (RT-PCR, Northern-Blotting, in situ-Hybridisierung) untersucht, wo und wann während der Entwicklung die entsprechenden Rezeptor-mRNAs im Gehirn der Honigbiene exprimiert werden. Als Modellobjekt zur Untersuchung der zellulären Wirkungen biogener Amine wurden die Speicheldrüsen der Amerikanischen Großschabe genutzt. An isolierten Speicheldrüsen läßt sich sowohl mit Dopamin als auch mit Serotonin Speichelproduktion auslösen, wobei Speichelarten unterschiedlicher Zusammensetzung gebildet werden. Dopamin induziert die Bildung eines völlig proteinfreien, wäßrigen Speichels. Serotonin bewirkt die Sekretion eines proteinhaltigen Speichels. Die Serotonin-induzierte Proteinsekretion wird durch eine Erhöhung der Konzentration des intrazellulären Botenstoffs cAMP vermittelt. Es wurden die pharmakologischen Eigenschaften der Dopamin-Rezeptoren der Schaben-Speicheldrüsen untersucht sowie mit der molekularen Charakterisierung putativer aminerger Rezeptoren der Schabe begonnen. Weiterhin habe ich das ebony-Gen der Schabe charakterisiert. Dieses Gen kodiert für ein Enzym, das wahrscheinlich bei der Schabe (wie bei anderen Insekten) an der Inaktivierung biogener Amine beteiligt ist und im Gehirn und in den Speicheldrüsen der Schabe exprimiert wird. N2 - Biogenic amines are small organic compounds that act as neurotransmitters, neuromodulators and/or neurohormones in vertebrates and in invertebrates. They form an important group of messenger substances and mediate their diverse effects by binding to membrane receptors that primarily belong to the large gene-family of G protein-coupled receptors. In insects, the group of biogenic amine messengers consists of five members: dopamine, tyramine, octopamine, serotonin, and histamine. Besides many other effects, some of these biogenic amines were shown, for example, to modulate gustatory sensitivity to sucrose stimuli in the honeybee (Apis mellifera). I have investigated various aspects of the aminergic signal transduction in the “model organisms” honeybee and American cockroach (Periplaneta americana). So far, I have characterized two dopamine receptors, a tyramine receptor, an octopamine receptor and a serotonin receptor of the honeybee, which is well-known for its learning and memory capacities. The receptors where expressed in cultivated mammalian cells in order to analyze their pharmacological and functional (i.e., second messenger coupling) properties. The spatiotemporal expression patterns of the respective receptor mRNA were investigated in the honeybee brain by using different techniques (RT PCR, Northern blotting, in situ-hybridization). The salivary glands of the American cockroach were used as a model object in order to investigate the cellular effects of biogenic amines. Both dopamine and serotonin trigger salivary secretion in isolated salivary glands. The quality of the secreted saliva is, however, different. Stimulation of the glands by serotonin results in the production of a protein-rich saliva, whereas stimulation by dopamine results in saliva that is protein-free. Serotonin-induced protein secretion is mediated by an increase in the intracellular concentration of cAMP. The pharmacological properties of dopamine receptors associated with cockroach salivary glands were investigated and the molecular characterization of putative aminergic receptors of the cockroach was initiated. Furthermore, I have characterized the ebony gene of the cockroach. This gene encodes an enzyme that is probably involved in the inactivation of biogenic amines in the cockroach (as in other insects). The ebony gene is expressed in the brain and in the salivary glands of the cockroach. KW - Neurotransmitter-Rezeptor KW - Dopamin KW - Tyramin KW - Octopamin KW - Serotonin KW - Insekten KW - Biene KW - Amerikanische Schabe KW - Biogene Amine KW - G-Protein-gekoppelte-Rezeptoren KW - biogenic amines KW - G protein-coupled receptors KW - honeybee KW - salivary gland Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-7568 ER - TY - THES A1 - Loßow, Kristina T1 - Erzeugung und Charakterisierung von Mausmodellen mit lichtsensitivem Geschmackssystem zur Aufklärung der neuronalen Geschmackskodierung T1 - Generation and characterization of transgenic lines of mice to elucidate neuralnetworks engaged in processing of gustatory information N2 - Die Wahrnehmung von Geschmacksempfindungen beruht auf dem Zusammenspiel verschiedener Sinneseindrücke wie Schmecken, Riechen und Tasten. Diese Komplexität der gustatorischen Wahrnehmung erschwert die Beantwortung der Frage wie Geschmacksinformationen vom Mund ins Gehirn weitergeleitet, prozessiert und kodiert werden. Die Analysen zur neuronalen Prozessierung von Geschmacksinformationen erfolgten zumeist mit Bitterstimuli am Mausmodell. Zwar ist bekannt, dass das Genom der Maus für 35 funktionelle Bitterrezeptoren kodiert, jedoch war nur für zwei unter ihnen ein Ligand ermittelt worden. Um eine bessere Grundlage für tierexperimentelle Arbeiten zu schaffen, wurden 16 der 35 Bitterrezeptoren der Maus heterolog in HEK293T-Zellen exprimiert und in Calcium-Imaging-Experimenten funktionell charakterisiert. Die Daten belegen, dass das Funktionsspektrum der Bitterrezeptoren der Maus im Vergleich zum Menschen enger ist und widerlegen damit die Aussage, dass humane und murine orthologe Rezeptoren durch das gleiche Ligandenspektrum angesprochen werden. Die Interpretation von tierexperimentellen Daten und die Übertragbarkeit auf den Menschen werden folglich nicht nur durch die Komplexität des Geschmacks, sondern auch durch Speziesunterschiede verkompliziert. Die Komplexität des Geschmacks beruht u. a. auf der Tatsache, dass Geschmacksstoffe selten isoliert auftreten und daher eine Vielzahl an Informationen kodiert werden muss. Um solche geschmacksstoffassoziierten Stimuli in der Analyse der gustatorischen Kommunikationsbahnen auszuschließen, sollten Opsine, die durch Licht spezifischer Wellenlänge angeregt werden können, für die selektive Ersetzung von Geschmacksrezeptoren genutzt werden. Um die Funktionalität dieser angestrebten Knockout-Knockin-Modelle zu evaluieren, die eine Kopplung von Opsinen mit dem geschmacksspezifischen G-Protein Gustducin voraussetzte, wurden Oozyten vom Krallenfrosch Xenopus laevis mit dem Zwei-Elektroden-Spannungsklemm-Verfahren hinsichtlich dieser Interaktion analysiert. Der positiven Bewertung dieser Kopplung folgte die Erzeugung von drei Mauslinien, die in der kodierenden Region eines spezifischen Geschmacksrezeptors (Tas1r1, Tas1r2, Tas2r114) Photorezeptoren exprimierten. Durch RT-PCR-, In-situ-Hybridisierungs- und immunhistochemische Experimente konnte der erfolgreiche Knockout der Rezeptorgene und der Knockin der Opsine belegt werden. Der Nachweis der Funktionalität der Opsine im gustatorischen System wird Gegenstand zukünftiger Analysen sein. Bei erfolgreichem Beleg der Lichtempfindlichkeit von Geschmacksrezeptorzellen dieser Mausmodelle wäre ein System geschaffen, dass es ermöglichen würde, gustatorische neuronale Netzwerke und Hirnareale zu identifizieren, die auf einen reinen geschmacks- und qualitätsspezifischen Stimulus zurückzuführen wären. N2 - Taste impression is based on the interaction of taste, smell and touch. To evaluate the nutritious content of food mammals possess five distinct taste qualities: sweet, bitter, umami (taste of amino acids), sour and salty. For bitter, sweet, and umami compounds taste signaling is initiated by binding of tastants to G protein-coupled receptors. The interactions of taste stimuli, usually watersoluble chemicals, with their cognate receptors lead to the activation of the G protein gustducin, which, in turn, initiates a signal resulting in the activation of gustatory afferents. However, details of gustatory signal transmission and processing as well as neural coding are only incompletely understood. This is partly due to the property of some tastants to elicit several sensations simultaneously, unspecific effects caused by the temperature, viscosity, osmolarity, and pH of the solvents, as well as by mechanical stimulation of the tongue during stimulus application. The analysis of gustatory processing of taste information are mainly based on mouse models after stimulation with bitter taste stimuli. Even though it is known that the mouse genome codes for 35 bitter taste receptor genes only few of them had been analysed so far. For better understanding and interpretation of animal experiments 16 mouse bitter receptors had been analysed by Calcium Imaging experiments with HEK293T cells. The data reveal that mouse bitter taste receptors are more narrow tuned than human bitter taste receptors, proving that the ligand spectra of murine and human orthologous receptors are not complient. In order to avoid the disturbing effects of solvents and stimulus application on the analysis of gustatory information transfer and processing, I employ an optogenetical approach to address this problem. For this purpose I generated three strains of gene-targeted mice in which the coding regions of the genes for the umami receptor subunit Tas1r1, the sweet receptor subunit Tas1r2 or the bitter taste receptor Tas2r114 have been replaced by the coding sequences of different opsins (photoreceptors of visual transduction) that are sensitive to light of various wavelengths. In these animals I should be able to activate sweet, bitter, or umami signalling by light avoiding any solvent effects. In initial experiments of this project I demonstrated that the various visual opsins indeed functionally couple to taste signal transduction pathway in oocyte expression system, generating basic knowledge and foundation for the generation of the gene-targeted animals. The knockout-knockin strategies have been successfully realized in the case of all three mouse models, revealed by RT-PCR, in situ hybridization and immunohistochemical analysis of taste papillae. All data confirm that the particular taste receptors have been replaced by the different opsins in taste cells. Further analysis concerning the functional consequences of opsin knockin and taste receptor knockout are part of prospective work. KW - Geschmack KW - G-Protein-gekoppelte Rezeptoren KW - Bitterrezeptoren KW - Optogenetik KW - taste KW - G protein-coupled receptors KW - bitter taste receptors KW - optogenetic Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-58059 ER -