TY - JOUR A1 - Kotz, Maximilian A1 - Wenz, Leonie A1 - Stechemesser, Annika A1 - Kalkuhl, Matthias A1 - Levermann, Anders T1 - Day-to-day temperature variability reduces economic growth JF - Nature climate change N2 - Elevated annual average temperature has been found to impact macro-economic growth. However, various fundamental elements of the economy are affected by deviations of daily temperature from seasonal expectations which are not well reflected in annual averages. Here we show that increases in seasonally adjusted day-to-day temperature variability reduce macro-economic growth independent of and in addition to changes in annual average temperature. Combining observed day-to-day temperature variability with subnational economic data for 1,537 regions worldwide over 40 years in fixed-effects panel models, we find that an extra degree of variability results in a five percentage-point reduction in regional growth rates on average. The impact of day-to-day variability is modulated by seasonal temperature difference and income, resulting in highest vulnerability in low-latitude, low-income regions (12 percentage-point reduction). These findings illuminate a new, global-impact channel in the climate–economy relationship that demands a more comprehensive assessment in both climate and integrated assessment models. KW - Climate change KW - Climate-change impacts KW - Economics KW - Environmental economics KW - Environmental impact Y1 - 2021 U6 - https://doi.org/10.1038/s41558-020-00985-5 SN - 1758-678X SN - 1758-6798 VL - 11 IS - 4 SP - 319 EP - 325 PB - Nature Publishing Group CY - London ER - TY - GEN A1 - Otto, Christian A1 - Piontek, Franziska A1 - Kalkuhl, Matthias A1 - Frieler, Katja T1 - Event-based models to understand the scale of the impact of extremes T2 - Nature energy N2 - Climate change entails an intensification of extreme weather events that can potentially trigger socioeconomic and energy system disruptions. As we approach 1 degrees C of global warming we should start learning from historical extremes and explicitly incorporate such events in integrated climate-economy and energy systems models. KW - Climate-change impacts KW - Energy economics KW - Socioeconomic scenarios Y1 - 2020 U6 - https://doi.org/10.1038/s41560-020-0562-4 SN - 2058-7546 VL - 5 IS - 2 SP - 111 EP - 114 PB - Nature Publishing Group CY - London ER -