TY - JOUR A1 - Füchsel, Gernot A1 - Tremblay, Jean Christophe A1 - Saalfrank, Peter T1 - A six-dimensional potential energy surface for Ru(0001)(2x2):CO JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - We present a new global ground state potential energy surface (PES) for carbon monoxide at a coverage of 1/4, on a rigid Ru(0001) surface [Ru(0001)(2x2):CO]. All six adsorbate degrees of freedom are considered. For constructing the PES, we make use of more than 90 000 points calculated with periodic density functional theory using the RPBE exchange-correlation functional and an empirical van der Waals correction. These points are used for interpolation, utilizing a symmetry-adapted corrugation reducing procedure (CRP). Three different interpolation schemes with increasing accuracy have been realized, giving rise to three flavours of the CRP PES. The CRP PES yields in agreement with the DFT reference and experiments, the atop position of CO to be the most stable adsorption geometry, for the most accurate interpolation with an adsorption energy of 1.69 eV. The CRP PES shows that diffusion parallel to the surface is hindered by a barrier of 430 meV, and that dissociation is facilitated but still activated. As a first "real" application and further test of the new potential, the six-dimensional vibrational Schrodinger equation is solved variationally to arrive at fully coupled, anharmonic frequencies and vibrational wavefunctions for the vibrating, adsorbed CO molecule. Good agreement with experiment is found also here. Being analytical, the new PES opens an efficient way towards multidimensional dynamics. (C) 2014 AIP Publishing LLC. Y1 - 2014 U6 - https://doi.org/10.1063/1.4894083 SN - 0021-9606 SN - 1089-7690 VL - 141 IS - 9 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Füchsel, Gernot A1 - Tremblay, Jean Christophe A1 - Klamroth, Tillmann A1 - Saalfrank, Peter A1 - Frischkorn, C. T1 - Concept of a single temperature for highly nonequilibrium laser-induced hydrogen desorption from a ruthenium surface JF - Physical review letters N2 - Laser-induced condensed phase reactions are often interpreted as nonequilibrium phenomena that go beyond conventional thermodynamics. Here, we show by Langevin dynamics and for the example of femtosecond-laser desorption of hydrogen from a ruthenium surface that light adsorbates thermalize rapidly due to ultrafast energy redistribution after laser excitation. Despite the complex reaction mechanism involving hot electrons in the surface region, all desorption product properties are characterized by equilibrium distributions associated with a single, unique temperature. This represents an example of ultrahot chemistry on the subpicosecond time scale. Y1 - 2012 U6 - https://doi.org/10.1103/PhysRevLett.109.098303 SN - 0031-9007 VL - 109 IS - 9 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Tremblay, Jean Christophe A1 - Klinkusch, Stefan A1 - Klamroth, Tillmann A1 - Saalfrank, Peter T1 - Dissipative many-electron dynamics of ionizing systems JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - In this paper, we perform many-electron dynamics using the time-dependent configuration-interaction method in its reduced density matrix formulation (rho-TDCI). Dissipation is treated implicitly using the Lindblad formalism. To include the effect of ionization on the state-resolved dynamics, we extend a recently introduced heuristic model for ionizing states to the rho-TDCI method, which leads to a reduced density matrix evolution that is not norm-preserving. We apply the new method to the laser-driven excitation of H(2) in a strongly dissipative environment, for which the state-resolve lifetimes are tuned to a few femtoseconds, typical for dynamics of adsorbate at metallic surfaces. Further testing is made on the laser-induced intramolecular charge transfer in a quinone derivative as a model for a molecular switch. A modified scheme to treat ionizing states is proposed to reduce the computational burden associated with the density matrix propagation, and it is thoroughly tested and compared to the results obtained with the former model. The new approach scales favorably (similar to N(2)) with the number of configurations N used to represent the reduced density matrix in the rho-TDCI method, as compared to a N(3) scaling for the model in its original form. Y1 - 2011 U6 - https://doi.org/10.1063/1.3532410 SN - 0021-9606 VL - 134 IS - 4 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Tremblay, Jean Christophe A1 - Monturet, Serge A1 - Saalfrank, Peter T1 - Electronic damping of anharmonic adsorbate vibrations at metallic surfaces N2 - The nonadiabatic coupling of an adsorbate close to a metallic surface leads to electronic damping of adsorbate vibrations and line broadening in vibrational spectroscopy. Here, a perturbative treatment of the electronic contribution to the lifetime broadening serves as a building block for a new approach, in which anharmonic vibrational transition rates are calculated from a position-dependent coupling function. Different models for the coupling function will be tested, all related to embedding theory. The first two are models based on a scattering approach with (i) a jellium-type and (ii) a density functional theory based embedding density, respectively. In a third variant a further refined model is used for the embedding density, and a semiempirical approach is taken in which a scaling factor is chosen to match harmonic, single-site, first-principles transition rates, obtained from periodic density functional theory. For the example of hydrogen atoms on (adsorption) and below (subsurface absorption) a Pd(111) surface, lifetimes of and transition rates between vibrational levels are computed. The transition rates emerging from different models serve as input for the selective subsurface adsorption of hydrogen in palladium starting from an adsorption site, by using sequences of infrared laser pulses in a laser distillation scheme. Y1 - 2010 UR - http://prb.aps.org/ U6 - https://doi.org/10.1103/Physrevb.81.125408 SN - 1098-0121 ER - TY - JOUR A1 - Tremblay, Jean Christophe A1 - Füchsel, Gernot A1 - Saalfrank, Peter T1 - Excitation, relaxation, and quantum diffusion of CO on copper JF - Physical review : B, Condensed matter and materials physics N2 - We investigate the effect of intermode coupling and anharmonicity on the excitation and relaxation dynamics of CO on Cu(100). The nonadiabatic coupling of the adsorbate to the surface is treated perturbatively using a position-dependent state-resolved transition rate model. Using the potential energy surface of Marquardt et al. [J. Chem. Phys. 132, 074108 (2010)], which provides an accurate description of intermode interactions, we propose a four-dimensional model that represents simultaneously the diffusion and the desorption of the adsorbate. The system is driven by both rational and optimized infrared laser pulses to favor either selective mode and state excitations or lateral displacement along the diffusion coordinate. The dissipative dynamics is simulated using the reduced density matrix in its Lindblad form. We show that coupling between the degrees of freedom, mediated by the creation and annihilation of electron-hole pairs in the metal substrate, significantly affects the system excitation and relaxation dynamics. In particular, the angular degrees of freedom appear to play an important role in the energy redistribution among the molecule-surface vibrations. We also show that coherent excitation using simple IR pulses can achieve population transfer to a specific target to some extent but does not allow enforcement of the directionality to the diffusion motion. Y1 - 2012 U6 - https://doi.org/10.1103/PhysRevB.86.045438 SN - 1098-0121 SN - 1550-235X VL - 86 IS - 4 PB - American Physical Society CY - College Park ER - TY - GEN A1 - Töpfer, Kai A1 - Tremblay, Jean Christophe T1 - How surface reparation prevents catalytic oxidation of carbon monoxide on atomic gold at defective magnesium oxide surfaces N2 - In this contribution, we study using first principles the co-adsorption and catalytic behaviors of CO and O2 on a single gold atom deposited at defective magnesium oxide surfaces. Using cluster models and point charge embedding within a density functional theory framework, we simulate the CO oxidation reaction for Au1 on differently charged oxygen vacancies of MgO(001) to rationalize its experimentally observed lack of catalytic activity. Our results show that: (1) co-adsorption is weakly supported at F0 and F2+ defects but not at F1+ sites, (2) electron redistribution from the F0 vacancy via the Au1 cluster to the adsorbed molecular oxygen weakens the O2 bond, as required for a sustainable catalytic cycle, (3) a metastable carbonate intermediate can form on defects of the F0 type, (4) only a small activation barrier exists for the highly favorable dissociation of CO2 from F0, and (5) the moderate adsorption energy of the gold atom on the F0 defect cannot prevent insertion of molecular oxygen inside the defect. Due to the lack of protection of the color centers, the surface becomes invariably repaired by the surrounding oxygen and the catalytic cycle is irreversibly broken in the first oxidation step. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 325 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-394978 ER - TY - JOUR A1 - Bouakline, Foudhil A1 - Tremblay, Jean Christophe T1 - Is it really possible to control aromaticity of benzene with light? JF - Physical chemistry, chemical physics : PCCP N2 - Recent theoretical investigations claim that tailored laser pulses may selectively steer benzene's aromatic ground state to localized non-aromatic excited states. For instance, it has been shown that electronic wavepackets, involving the two lowest electronic eigenstates, exhibit subfemtosecond charge oscillation between equivalent Kekule resonance structures. In this contribution, we show that such dynamical electron-localization in the molecule-fixed frame contravenes the principle of the indistinguishability of identical particles. This breach stems from a total omission of the nuclear degrees of freedom, giving rise to nonsymmetric electronic wavepackets under nuclear permutations. Enforcement of the latter leads to entanglement between the electronic and nuclear states. To obey quantum statistics, the entangled molecular states should involve compensating nuclear-permutation symmetries. This in turn engenders complete quenching of dynamical electron-localization in the molecule-fixed frame. Indeed, for the (six-fold) equilibrium geometry of benzene, group-theoretic analysis reveals that any electronic wavepacket exhibits a (D-6h) totally symmetric electronic density, at all times. Thus, our results clearly show that the six carbon atoms, and the six C-C bonds, always have equal Mulliken charges, and equal bond orders, respectively. However, electronic wavepackets may display dynamical localization of the electronic density in the space-fixed frame, whenever they involve both even and odd space-inversion (parity) or permutation-inversion symmetry. Dynamical spatial-localization can be probed experimentally in the laboratory frame, but it should not be deemed equivalent to charge oscillation between benzene's identical electronic substructures, such as Kekule resonance structures. Y1 - 2020 U6 - https://doi.org/10.1039/c9cp06794a SN - 1463-9076 SN - 1463-9084 VL - 22 IS - 27 SP - 15401 EP - 15412 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Tremblay, Jean Christophe T1 - Laser control of molecular excitations in stochastic dissipative media JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - In the present work, ideas for controlling photochemical reactions in dissipative environments using shaped laser pulses are presented. New time-local control algorithms for the stochastic Schrodinger equation are introduced and compared to their reduced density matrix analog. The numerical schemes rely on time-dependent targets for guiding the reaction along a preferred path. The methods are tested on the vibrational control of adsorbates at metallic surfaces and on the ultrafast electron dynamics in a strong dissipative medium. The selective excitation of the specific states is achieved with improved yield when using the new algorithms. Both methods exhibit similar convergence behavior and results compare well with those obtained using local optimal control for the reduced density matrix. The favorable scaling of the methods allows to tackle larger systems and to control photochemical reactions in dissipative media of molecules with many more degrees of freedom. Y1 - 2011 U6 - https://doi.org/10.1063/1.3587093 SN - 0021-9606 VL - 134 IS - 17 PB - American Institute of Physics CY - Melville ER - TY - GEN A1 - Tremblay, Jean Christophe A1 - Blanco-Rey, Maria T1 - Manipulating interfacial hydrogens at palladium via STM N2 - In this contribution, we provide a detailed dynamical analysis of the interfacial hydrogen migration mediated by scanning tunneling microscopy (STM). Contributions from the STM-current and from the non-adiabatic couplings are taken into account using only first principle models. The slight asymmetry of the tunnelling rates with respect to the potential bias sign inferred from experimental observations is reproduced by weighting the contributions of the metal acceptor–donor states for the propagation of the impinging electrons. The quasi-thermal inelastic collision mechanism is treated perturbatively. The influence of hydrogen pre-coverage is also investigated using new potential energy surfaces obtained from periodic density functional theory calculations. Fully quantum dynamical simulations of the system evolution are performed by solving the Pauli master equation, providing insight into the reaction mechanism of STM manipulation of subsurface hydrogens. It is observed that the hydrogen impurity favors resurfacing over occupation of the bulk and subsurface sites whenever possible. The present simulations give strong indication that the experimentally observed protuberances after STM-excitation are due to hydrogen accumulating in the vicinity of the surface. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 291 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-99511 ER - TY - CHAP A1 - Saalfrank, Peter A1 - Bedurke, Florian A1 - Heide, Chiara A1 - Klamroth, Tillmann A1 - Klinkusch, Stefan A1 - Krause, Pascal A1 - Nest, Mathias A1 - Tremblay, Jean Christophe ED - Ruud, Kenneth ED - Brändas, Erkki J. T1 - Molecular attochemistry: correlated electron dynamics driven by light T2 - Advances in quantum chemistry N2 - Modern laser technology and ultrafast spectroscopies have pushed the timescales for detecting and manipulating dynamical processes in molecules from the picosecond over femtosecond domains, to the attosecond regime (1 as = 10(-18) s). This way, real-time dynamics of electrons after their photoexcitation can be probed and manipulated. In particular, experiments are moving more and more from atomic and solid state systems to molecules, opening the fields of "molecular electron dynamics" and "attosecond chemistry." Also on the theory side, powerful quantum dynamical tools have been developed to rationalize experiments on ultrafast electron dynamics in molecular species.
In this contribution, we concentrate on theoretical aspects of ultrafast electron dynamics in molecules, mostly driven by lasers. The dynamics will be described with the help of wavefunction-based ab initio methods such as time-dependent configuration interaction (TD-CI) or the multiconfigurational time-dependent Hartree-Fock (MCTDHF) methods. Besides a survey of the methods and their extensions toward, e.g., treatment of ionization, laser pulse optimization, and open quantum systems, two specific examples of applications will be considered: The creation and/or dynamical fate of electronic wavepackets, and the nonlinear optical response to laser pulse excitation in molecules by high harmonic generation (HHG). KW - dipole approximation KW - electron dynamics KW - electronic wavepackets KW - high harmonic generation KW - ionization KW - optimal control theory KW - time-dependent Schrödinger equation Y1 - 2020 SN - 978-0-12-819757-8 U6 - https://doi.org/10.1016/bs.aiq.2020.03.001 SN - 0065-3276 VL - 81 SP - 15 EP - 50 PB - Elsevier CY - Amsterdam [u.a.] ER -