TY - JOUR A1 - Sobel, Edward A1 - Arnaud, Nikolas T1 - A possible middle paleozoic suture in the altyn tagh, NorthWest China Y1 - 1999 ER - TY - JOUR A1 - Leloup, Philippe-Hervé A1 - Arnaud, Nicolas A1 - Sobel, Edward A1 - Lacassin, R. T1 - Alpine thermal and structural evolution of the highest external crystalline massif : the Mont Blanc N2 - The alpine structural evolution of the Mont Blanc, highest point of the Alps (4810 m), and of the surrounding area has been reexamined. The Mont Blanc and the Aiguilles Rouges external crystalline massifs are windows of Variscan basement within the Penninic and Helvetic nappes. New structural, Ar-40/Ar-39, and fission track data combined with a compilation of earlier P-T estimates and geochronological data give constraints on the amount and timing of the Mont Blanc and Aiguilles Rouges massifs exhumation. Alpine exhumation of the Aiguilles Rouges was limited to the thickness of the overlying nappes (similar to 10 km), while rocks now outcropping in the Mont Blanc have been exhumed from 15 to 20 km depth. Uplift of the two massifs started similar to 22 Myr ago, probably above an incipient thrust: the Alpine sole thrust. At similar to 12 Ma, the NE-SW trending Mont Blanc shear zone (MBsz) initiated. It is a major steep reverse fault with a dextral component, whose existence has been overlooked by most authors, that brings the Mont Blanc above the Aiguilles Rouges. Total vertical throw on the MBsz is estimated to be between 4 and 8 km. Fission track data suggest that relative motion between the Aiguilles Rouges and the Mont Blanc stopped similar to 4 Myr ago. Since that time, uplift of the Mont Blanc has mostly taken place along the Mont Blanc back thrust, a steep north dipping fault bounding the southern flank of the range. The "European roof'' is located where the back thrust intersects the MBsz. Uplift of the Mont Blanc and Aiguilles Rouges occurred toward the end of motion on the Helvetic basal decollement (HBD) at the base of the Helvetic nappes but is coeval with the Jura thin-skinned belt. Northwestward thrusting and uplift of the external crystalline massifs above the Alpine sole thrust deformed the overlying Helvetic nappes and formed a backstop, inducing the formation of the Jura arc. In that part of the external Alps, similar to NW-SE shortening with minor dextral NE-SW motions appears to have been continuous from similar to 22 Ma until at least similar to 4 Ma but may be still active today. A sequential history of the alpine structural evolution of the units now outcropping NW of the Pennine thrust is proposed Y1 - 2005 SN - 0278-7407 ER - TY - JOUR A1 - Behyari, Mahdi A1 - Mohajjel, Mohammad A1 - Sobel, Edward A1 - Rezaeian, Mahnaz A1 - Moayyed, Mohssen A1 - Schmidt, Alexander T1 - Analysis of exhumation history in Misho Mountains, NW Iran BT - insights from structural and apatite fission track data JF - Neues Jahrbuch für Geologie und Paläontologie : merged with Neues Jahrbuch für Geol. und Paläont. Monatshefte". Abhandlungen N2 - The Misho complex in Northwest Iran is a prominent topographic massif bounded by well known active faults. Our new structural analysis of this area indicates that faulting has important role in the exhumation of this complex. The conjugate orientation of the North and South Misho Faults caused uplift in the Misho and exhumation of the Precambrian crystalline basement. Our structural and stratigraphic data shows that rapid uplift could have been initiation since the 21-22 Ma and exhumation rate was about 0.16 to 0.24 km/Ma. To refine this age, we performed U/Pb analysis of detrital zircon from the Upper Red Formation using LA-ICP-MS. We conducted AFT analysis on 6 basement samples from the hanging wall and 1 sample from the Upper Red Formation in the footwall NMF. Uplift in the hanging wall of NMF led to resting of sample 916 marl. This geochronologic and thermochronologic data shows that exhumation in the MC is diachronously along strike and affected by faults. The phase of exhumation is documented in the study area and entire Iranian plateau is related to the final closure of the Neo-Tethys and northward motion of the Arabian Plate. KW - Misho complex KW - NW Iran KW - North Tabriz Fault KW - apatite fission track KW - exhumation Y1 - 2017 U6 - https://doi.org/10.1127/njgpa/2017/0642 SN - 0077-7749 VL - 283 IS - 3 SP - 291 EP - 308 PB - Schweizerbart CY - Stuttgart ER - TY - JOUR A1 - Wilke, Franziska Daniela Helena A1 - Sobel, Edward A1 - O'Brien, Patrick J. A1 - Stockli, Daniel F. T1 - Apatite fission track and (U-Th)/He ages from the Higher Himalayan Crystallines, Kaghan Valley, Pakistan: Implications for an Eocene Plateau and Oligocene to Pliocene exhumation JF - Journal of Asian earth sciences N2 - Apatite fission track and apatite and zircon (U-Th)/He ages were obtained from high- and ultra high-pressure rocks from the Kaghan Valley, Pakistan. Four samples from the high altitude northern parts of the valley yielded apatite fission track ages between 24.5 +/- 3.7 and 15.6 +/- 2.1 Ma and apatite (U-Th)/He ages between 21.0 +/- 0.6 and 5.3 +/- 0.2 Ma. These data record cooling of the formerly deeply-subducted high-grade metamorphic rocks induced by denudation and exhumation consistent with extension and back sliding along the reactivated, normal-acting Main Mantle Thrust. Overlap at around 10 Ma between fission track and (U-Th)/He ages is recognised at one location (Besal) showing that fast cooling occurred due to brittle reactivation of a former thrust fault. Widespread Miocene cooling is also evident in adjacent areas to the west (Deosai Plateau, Tso Moran), most likely related to uplift and unroofing linked to continued underplating of the Indian lower crust beneath Ladakh and Kohistan in the Late Eocene to Oligocene. In the southernmost part of the study area, near Naran, two significantly younger Late Miocene to Pliocene apatite fission track ages of 7.6 +/- 2.1 to 4.0 +/- 0.5 Ma suggest a spatial and temporal separation of exhumation processes. These younger ages are best explained by enhanced Late Miocene uplift and erosion driven by thrusting along the Main Boundary Thrust. KW - NW Himalaya KW - Kaghan Valley KW - Thermochronology KW - AFT KW - (U-Th)/He KW - Cooling rates Y1 - 2012 U6 - https://doi.org/10.1016/j.jseaes.2012.06.014 SN - 1367-9120 VL - 59 IS - 3 SP - 14 EP - 23 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Hülscher, Julian A1 - Sobel, Edward A1 - Kallnik, Niklas A1 - Hoffmann, J. Elis A1 - Millar, Ian L. A1 - Hartmann, Kai A1 - Bernhardt, Anne T1 - Apatites record sedimentary provenance change 4-5 myrs before clay in the Oligocene/Miocene Alpine molasse JF - Frontiers in Earth Science N2 - Extracting information about past tectonic or climatic environmental changes from sedimentary records is a key objective of provenance research. Interpreting the imprint of such changes remains challenging as signals might be altered in the sediment-routing system. We investigate the sedimentary provenance of the Oligocene/Miocene Upper Austrian Northern Alpine Foreland Basin and its response to the tectonically driven exhumation of the Tauern Window metamorphic dome (28 +/- 1 Ma) in the Eastern European Alps by using the unprecedented combination of Nd isotopic composition of bulk-rock clay-sized samples and partly previously published multi-proxy (Nd isotopic composition, trace-element geochemistry, U-Pb dating) sand-sized apatite single-grain analysis. The basin offers an excellent opportunity to investigate environmental signal propagation into the sedimentary record because comprehensive stratigraphic and seismic datasets can be combined with present research results. The bulk-rock clay-sized fraction epsilon Nd values of well-cutting samples from one well on the northern basin slope remained stable at similar to-9.7 from 27 to 19 Ma but increased after 19 Ma to similar to-9.1. In contrast, apatite single-grain distributions, which were extracted from 22 drill-core samples, changed significantly around 23.3 Ma from apatites dominantly from low-grade (