TY - THES A1 - Roland, Steffen T1 - Charge carrier recombination and open circuit voltage in organic solar cells T1 - Ladungsträger Rekombination und Leerlaufspannung in organischen Solarzellen BT - from bilayer-model systems to hybrid multi-junctions BT - von Bilayer Modellsystemen zu hybriden Mehrschichtsolarzellen N2 - Tremendous progress in the development of thin film solar cell techniques has been made over the last decade. The field of organic solar cells is constantly developing, new material classes like Perowskite solar cells are emerging and different types of hybrid organic/inorganic material combinations are being investigated for their physical properties and their applicability in thin film electronics. Besides typical single-junction architectures for solar cells, multi-junction concepts are also being investigated as they enable the overcoming of theoretical limitations of a single-junction. In multi-junction devices each sub-cell operates in different wavelength regimes and should exhibit optimized band-gap energies. It is exactly this tunability of the band-gap energy that renders organic solar cell materials interesting candidates for multi-junction applications. Nevertheless, only few attempts have been made to combine inorganic and organic solar cells in series connected multi-junction architectures. Even though a great diversity of organic solar cells exists nowadays, their open circuit voltage is usually low compared to the band-gap of the active layer. Hence, organic low band-gap solar cells in particular show low open circuit voltages and the key factors that determine the voltage losses are not yet fully understood. Besides open circuit voltage losses the recombination of charges in organic solar cells is also a prevailing research topic, especially with respect to the influence of trap states. The exploratory focus of this work is therefore set, on the one hand, on the development of hybrid organic/inorganic multi-junctions and, on the other hand, on gaining a deeper understanding of the open circuit voltage and the recombination processes of organic solar cells. In the first part of this thesis, the development of a hybrid organic/inorganic triple-junction will be discussed which showed at that time (Jan. 2015) a record power conversion efficiency of 11.7%. The inorganic sub-cells of these devices consist of hydrogenated amorphous silicon and were delivered by the Competence Center Thin-Film and Nanotechnology for Photovoltaics in Berlin. Different recombination contacts and organic sub-cells were tested in conjunction with these inorganic sub-cells on the basis of optical modeling predictions for the optimal layer thicknesses to finally reach record efficiencies for this type of solar cells. In the second part, organic model systems will be investigated to gain a better understanding of the fundamental loss mechanisms that limit the open circuit voltage of organic solar cells. First, bilayer systems with different orientation of the donor and acceptor molecules were investigated to study the influence of the donor/acceptor orientation on non-radiative voltage loss. Secondly, three different bulk heterojunction solar cells all comprising the same amount of fluorination and the same polymer backbone in the donor component were examined to study the influence of long range electrostatics on the open circuit voltage. Thirdly, the device performance of two bulk heterojunction solar cells was compared which consisted of the same donor polymer but used different fullerene acceptor molecules. By this means, the influence of changing the energetics of the acceptor component on the open circuit voltage was investigated and a full analysis of the charge carrier dynamics was presented to unravel the reasons for the worse performance of the solar cell with the higher open circuit voltage. In the third part, a new recombination model for organic solar cells will be introduced and its applicability shown for a typical low band-gap cell. This model sheds new light on the recombination process in organic solar cells in a broader context as it re-evaluates the recombination pathway of charge carriers in devices which show the presence of trap states. Thereby it addresses a current research topic and helps to resolve alleged discrepancies which can arise from the interpretation of data derived by different measurement techniques. N2 - In der Photovoltaikforschung spielen neuartige Dünnschichtsolarzellen eine immer größere Rolle. Neben innovativen Design und Anwendungskonzepten sind Material und Kostenreduzierung in der Herstellung die größten Triebfedern für die Entwicklung neuer Technologien. Hier sind neben den vielversprechenden Perowskitsolarzellen insbesondere organische Solarzellen zu nennen, die sich durch ihre chemische Vielseitigkeit, einfache Verarbeitung und stetige Weiterentwicklung in Bezug auf ihre Effizienz auszeichnen. Diese Vielseitigkeit ermöglicht die Herstellung organischer Solarzellen mit unterschiedlicher spektraler Empfindlichkeit, was wiederum Vorteile für den Einsatz in seriengeschaltete Mehrschichtsolarzellen bietet. Diese erlauben es, fundamentale Limitierungen von Einschichtsolarzellsystemen zu überwinden. Der erste Teil dieser Arbeit befasst sich daher mit der Entwicklung einer neuartigen hybriden Multischichtsolarzelle, die sowohl aus anorganischen als auch organischen Subzellen besteht und zum Zeitpunkt ihrer Veröffentlichung einen neuen Effizienzrekord für diese Klasse von Solarzellen aufzeigte. Der zweite Teil der Arbeit befasst sich mit fundamentalen physikalischen Prozessen in organischen Solarzellen, da viele Funktionsmechanismen noch nicht im Detail geklärt sind. An verschiedenen organischen Modellsolarzellsystemen wurde daher unter anderem der Einfluss molekularer Orientierung von Donor- und Akzeptorkomponenten der Solarzelle oder der Einfluss von Fluorinierung des Donors auf die Leerlaufspannung der Solarzelle untersucht. Auf diese Weise konnten neue wichtige Erkenntnisse über den Einfluss von verschiedenen Verlustkanälen und der Energetik auf die Leerlaufspannung gewonnen werden. Der letzte Teil der Arbeit widmet sich der Entwicklung eines neuen Modells, welches den Rekombinationsprozess von Ladungen in einer bestimmten organischen Solarzelle beschreibt. Dieses neue Modell wurde anhand umfangreicher Experimente validiert und ermöglicht es, insbesondere den Einfluss freier und in sogenannten Fallenzuständen gefangener Ladungen auf die Rekombination zu trennen. Damit hat dieses Modell eine weitreichende Bedeutung, zum einen für die Beurteilung von typischen Rekombinationsexperimenten in organischen Solarzellen und zum anderen für die Bewertung des Einflusses von Fallenzuständen auf den Rekombinationsstrom. KW - organic solar cells KW - charge carrier recombination KW - open circuit voltage KW - hybrid multi-junction solar cell KW - organische Solarzellen KW - Ladungsträgerrekombination KW - Leerlaufspannung KW - hybride Mehrschichtsolarzellen Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-397721 ER - TY - JOUR A1 - Roland, Steffen A1 - Yan, Liang A1 - Zhang, Qianqian A1 - Jiao, Xuechen A1 - Hunt, Adrian A1 - Ghasemi, Masoud A1 - Ade, Harald A1 - You, Wei A1 - Neher, Dieter T1 - Charge Generation and Mobility-Limited Performance of Bulk Heterojunction Solar Cells with a Higher Adduct Fullerene JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - Alternative electron acceptors are being actively explored in order to advance the development of bulk-heterojunction (BHJ) organic solar cells (OSCs). The indene-C-60 bisadduct (ICBA) has been regarded as a promising candidate, as it provides high open-circuit voltage in BHJ solar cells; however, the photovoltaic performance of such ICBA-based devices is often inferior when compared to cells with the omnipresent PCBM electron acceptor. Here, by pairing the high performance polymer (FTAZ) as the donor with either PCBM or ICBA as the acceptor, we explore the physical mechanism behind the reduced performance of the ICBA-based device. Time delayed collection field (TDCF) experiments reveal reduced, yet field-independent free charge generation in the FTAZ:ICBA system, explaining the overall lower photocurrent in its cells. Through the analysis of the photoluminescence, photogeneration, and electroluminescence, we find that the lower generation efficiency is neither caused by inefficient exciton splitting, nor do we find evidence for significant energy back-transfer from the CT state to singlet excitons. In fact, the increase in open circuit voltage when replacing PCBM by ICBA is entirely caused by the increase in the CT energy, related to the shift in the LUMO energy, while changes in the radiative and nonradiative recombination losses are nearly absent. On the other hand, space charge limited current (SCLC) and bias-assisted charge extraction (BACE) measurements consistently reveal a severely lower electron mobilitiy in the FTAZ:ICBA blend. Studies of the blends with resonant soft X-ray scattering (R-SoXS), grazing incident wide-angle X-ray scattering (GIWAXS), and scanning transmission X-ray microscopy (STXM) reveal very little differences in the mesoscopic morphology but significantly less nanoscale molecular ordering of the fullerene domains in the ICBA based blends, which we propose as the main cause for the lower generation efficiency and smaller electron mobility. Calculations of the JV curves with an analytical model, using measured values, show good agreement with the experimentally determined JV characteristics, proving that these devices suffer from slow carrier extraction, resulting in significant bimolecular recombination losses. Therefore, this study highlights the importance of high charge carrier mobility for newly synthesized acceptor materials, in addition to having suitable energy levels. Y1 - 2017 U6 - https://doi.org/10.1021/acs.jpcc.7b02288 SN - 1932-7447 VL - 121 SP - 10305 EP - 10316 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Bartesaghi, Davide A1 - Perez, Irene del Carmen A1 - Kniepert, Juliane A1 - Roland, Steffen A1 - Turbiez, Mathieu A1 - Neher, Dieter A1 - Koster, L. Jan Anton T1 - Competition between recombination and extraction of free charges determines the fill factor of organic solar cells JF - Nature Communications N2 - Among the parameters that characterize a solar cell and define its power-conversion efficiency, the fill factor is the least well understood, making targeted improvements difficult. Here we quantify the competition between charge extraction and recombination by using a single parameter theta, and we demonstrate that this parameter is directly related to the fill factor of many different bulk-heterojunction solar cells. Our finding is supported by experimental measurements on 15 different donor: acceptor combinations, as well as by drift-diffusion simulations of organic solar cells in which charge-carrier mobilities, recombination rate, light intensity, energy levels and active-layer thickness are all varied over wide ranges to reproduce typical experimental conditions. The results unify the fill factors of several very different donor: acceptor combinations and give insight into why fill factors change so much with thickness, light intensity and materials properties. To achieve fill factors larger than 0.8 requires further improvements in charge transport while reducing recombination. Y1 - 2015 U6 - https://doi.org/10.1038/ncomms8083 SN - 2041-1723 VL - 6 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Schubert, Marcel A1 - Collins, Brian A. A1 - Mangold, Hannah A1 - Howard, Ian A. A1 - Schindler, Wolfram A1 - Vandewal, Koen A1 - Roland, Steffen A1 - Behrends, Jan A1 - Kraffert, Felix A1 - Steyrleuthner, Robert A1 - Chen, Zhihua A1 - Fostiropoulos, Konstantinos A1 - Bittl, Robert A1 - Salleo, Alberto A1 - Facchetti, Antonio A1 - Laquai, Frederic A1 - Ade, Harald W. A1 - Neher, Dieter T1 - Correlated donor/acceptor crystal orientation controls photocurrent generation in all-polymer solar cells JF - Advanced functional materials N2 - New polymers with high electron mobilities have spurred research in organic solar cells using polymeric rather than fullerene acceptors due to their potential of increased diversity, stability, and scalability. However, all-polymer solar cells have struggled to keep up with the steadily increasing power conversion efficiency of polymer: fullerene cells. The lack of knowledge about the dominant recombination process as well as the missing concluding picture on the role of the semi-crystalline microstructure of conjugated polymers in the free charge carrier generation process impede a systematic optimization of all-polymer solar cells. These issues are examined by combining structural and photo-physical characterization on a series of poly(3-hexylthiophene) (donor) and P(NDI2OD-T2) (acceptor) blend devices. These experiments reveal that geminate recombination is the major loss channel for photo-excited charge carriers. Advanced X-ray and electron-based studies reveal the effect of chloronaphthalene co-solvent in reducing domain size, altering domain purity, and reorienting the acceptor polymer crystals to be coincident with those of the donor. This reorientation correlates well with the increased photocurrent from these devices. Thus, effi cient split-up of geminate pairs at polymer/polymer interfaces may necessitate correlated donor/acceptor crystal orientation, which represents an additional requirement compared to the isotropic fullerene acceptors. Y1 - 2014 U6 - https://doi.org/10.1002/adfm.201304216 SN - 1616-301X SN - 1616-3028 VL - 24 IS - 26 SP - 4068 EP - 4081 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Gehrig, Dominik W. A1 - Roland, Steffen A1 - Howard, Ian A. A1 - Kamm, Valentin A1 - Mangold, Hannah A1 - Neher, Dieter A1 - Laquai, Frederic T1 - Efficiency-limiting processes in low-bandgap polymer:Perylene diimide photovoltaic blends JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - The charge generation and recombination processes following photo-excitation of a low-bandgap polymer:perylene diimide photovoltaic blend are investigated by transient absorption pump-probe spectroscopy covering a dynamic range from femto-to microseconds to get insight into the efficiency-limiting photophysical processes. The several tens of picoseconds, and its efficiency is only half of that in a polymer:fullerene photoinduced electron transfer from the polymer to the perylene acceptor takes up to blend. This reduces the short-circuit current. Time-delayed collection field experiments reveal that the subsequent charge separation is strongly field-dependent, limiting the fill factor and lowering the short-circuit current in polymer:PDI devices. Upon excitation of the acceptor in the low-bandgap polymer blend, the PDI exciton undergoes charge transfer on a time scale of several tens of picoseconds. However, a significant fraction of the charges generated at the interface are quickly lost because of fast geminate recombination. This reduces the short-circuit current even further, leading to a scenario in which only around 2596 of the initial photoexcitations generate free charges that can potentially contribute to the photocurrent. In summary, the key photophysical limitations of perylene diimide as an acceptor in low-bandgap polymer blends appear at the interface between the materials, with the kinetics of both charge generation and separation inhibited as compared to that of fullerenes. Y1 - 2014 U6 - https://doi.org/10.1021/jp503366m SN - 1932-7447 VL - 118 IS - 35 SP - 20077 EP - 20085 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Albrecht, Steve A1 - Grootoonk, Bjorn A1 - Neubert, Sebastian A1 - Roland, Steffen A1 - Wordenweber, Jan A1 - Meier, Matthias A1 - Schlatmann, Rutger A1 - Gordijn, Aad A1 - Neher, Dieter T1 - Efficient hybrid inorganic/organic tandem solar cells with tailored recombination contacts JF - Solar energy materials & solar cells : an international journal devoted to photovoltaic, photothermal, and photochemical solar energy conversion N2 - In this work, the authors present a 7.5% efficient hybrid tandem solar cell with the bottom cell made of amorphous silicon and a Si-PCPDTBT:PC70BM bulk heterojunction top cell. Loss-free recombination contacts were realized by combing Al-doped ZnO with either the conducting polymer composite PEDOT:PSS or with a bilayer of ultrathin Al and MoO3. Optimization of these contacts results in tandem cells with high fill factors of 70% and an open circuit voltage close to the sum of those of the sub-cells. This is the best efficiency reported for this type of hybrid tandem cell so far. Optical and electrical device modeling suggests that the efficiency can be increased to similar to 12% on combining a donor polymer with suitable absorption onset with PCBM. We also describe proof-of-principle studies employing light trapping in hybrid tandem solar cells, suggesting that this device architecture has the potential to achieve efficiencies well above 12%. (C) 2014 Elsevier B.V. All rights reserved. KW - Hybrid solar cells KW - Tandem solar cells KW - Organic solar cells KW - Bulk heterojunction KW - Efficiency optimization Y1 - 2014 U6 - https://doi.org/10.1016/j.solmat.2014.04.020 SN - 0927-0248 SN - 1879-3398 VL - 127 SP - 157 EP - 162 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Ullbrich, Sascha A1 - Benduhn, Johannes A1 - Jia, Xiangkun A1 - Nikolis, Vasileios C. A1 - Tvingstedt, Kristofer A1 - Piersimoni, Fortunato A1 - Roland, Steffen A1 - Liu, Yuan A1 - Wu, Jinhan A1 - Fischer, Axel A1 - Neher, Dieter A1 - Reineke, Sebastian A1 - Spoltore, Donato A1 - Vandewal, Koen T1 - Emissive and charge-generating donor-acceptor interfaces for organic optoelectronics with low voltage losses JF - Nature materials N2 - Intermolecular charge-transfer states at the interface between electron donating (D) and accepting (A) materials are crucial for the operation of organic solar cells but can also be exploited for organic light-emitting diodes(1,2). Non-radiative charge-transfer state decay is dominant in state-of-the-art D-A-based organic solar cells and is responsible for large voltage losses and relatively low power-conversion efficiencies as well as electroluminescence external quantum yields in the 0.01-0.0001% range(3,4). In contrast, the electroluminescence external quantum yield reaches up to 16% in D-A-based organic light-emitting diodes(5-7). Here, we show that proper control of charge-transfer state properties allows simultaneous occurrence of a high photovoltaic and emission quantum yield within a single, visible-light-emitting D-A system. This leads to ultralow-emission turn-on voltages as well as significantly reduced voltage losses upon solar illumination. These results unify the description of the electro-optical properties of charge-transfer states in organic optoelectronic devices and foster the use of organic D-A blends in energy conversion applications involving visible and ultraviolet photons(8-11). KW - Electronics, photonics and device physics KW - Optoelectronic devices and components KW - Photonic devices KW - Solar energy and photovoltaic technology Y1 - 2019 U6 - https://doi.org/10.1038/s41563-019-0324-5 SN - 1476-1122 SN - 1476-4660 VL - 18 IS - 5 SP - 459 EP - 464 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Roland, Steffen A1 - Kniepert, Juliane A1 - Love, John A. A1 - Negi, Vikas A1 - Liu, Feilong A1 - Bobbert, Peter A1 - Melianas, Armantas A1 - Kemerink, Martijn A1 - Hofacker, Andreas A1 - Neher, Dieter T1 - Equilibrated Charge Carrier Populations Govern Steady-State Nongeminate Recombination in Disordered Organic Solar Cells JF - The journal of physical chemistry letters N2 - We employed bias-assisted charge extraction techniques to investigate the transient and steady-state recombination of photogenerated charge carriers in complete devices of a disordered polymer-fullerene blend. Charge recombination is shown to be dispersive, with a significant slowdown of the recombination rate over time, consistent with the results from kinetic Monte Carlo simulations. Surprisingly, our experiments reveal little to no contributions from early time recombination of nonequilibrated charge carriers to the steady-state recombination properties. We conclude that energetic relaxation of photogenerated carriers outpaces any significant nongeminate recombination under application-relevant illumination conditions. With equilibrated charges dominating the steady-state recombination, quasi-equilibrium concepts appear suited for describing the open-circuit voltage of organic solar cells despite pronounced energetic disorder. Y1 - 2019 U6 - https://doi.org/10.1021/acs.jpclett.9b00516 SN - 1948-7185 VL - 10 IS - 6 SP - 1374 EP - 1381 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Roland, Steffen A1 - Schubert, Marcel A1 - Collins, Brian A. A1 - Kurpiers, Jona A1 - Chen, Zhihua A1 - Facchetti, Antonio A1 - Ade, Harald W. A1 - Neher, Dieter T1 - Fullerene-free polymer solar cells with highly reduced bimolecular recombination and field-independent charge carrier generation JF - The journal of physical chemistry letters N2 - Photogeneration, recombination, and transport of free charge carriers in all-polymer bulk heterojunction solar cells incorporating poly(3-hexylthiophene) (P3HT) as donor and poly([N,N'-bis(2-octyldodecyl)-naphthelene-1,4,5,8-bis(dicarboximide)-2,6-diyl]-alt-5,5'-(2,2'-bithiophene)) (P(NDI2OD-T2)) as acceptor polymer have been investigated by the use of time delayed collection field (TDCF) and time-of-flight (TOF) measurements. Depending on the preparation procedure used to dry the active layers, these solar cells comprise high fill factors (FFs) of up to 67%. A strongly reduced bimolecular recombination (BMR), as well as a field-independent free charge carrier generation are observed, features that are common to high performance fullerene-based solar cells. Resonant soft X-ray measurements (R-SoXS) and photoluminescence quenching experiments (PQE) reveal that the BMR is related to domain purity. Our results elucidate the similarities of this polymeric acceptor with the superior recombination properties of fullerene acceptors. Y1 - 2014 U6 - https://doi.org/10.1021/jz501506z SN - 1948-7185 VL - 5 IS - 16 SP - 2815 EP - 2822 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Roland, Steffen A1 - Neubert, Sebastian A1 - Albrecht, Steve A1 - Stannowski, Bernd A1 - Seger, Mark A1 - Facchetti, Antonio A1 - Schlatmann, Rutger A1 - Rech, Bernd A1 - Neher, Dieter T1 - Hybrid Organic/Inorganic Thin-Film Multijunction Solar Cells Exceeding 11% Power Conversion Efficiency JF - Advanced materials N2 - Hybrid multijunction solar cells comprising hydrogenated amorphous silicon and an organic bulk heterojunction are presented, reaching 11.7% power conversion efficiency. The benefits of merging inorganic and organic subcells are pointed out, the optimization of the cells, including optical modeling predictions and tuning of the recombination contact are described, and an outlook of this technique is given. Y1 - 2015 U6 - https://doi.org/10.1002/adma.201404698 SN - 0935-9648 SN - 1521-4095 VL - 27 IS - 7 SP - 1262 EP - 1267 PB - Wiley-VCH CY - Weinheim ER -