TY - JOUR A1 - Ghosh, Surya K. A1 - Cherstvy, Andrey G. A1 - Petrov, Eugene P. A1 - Metzler, Ralf T1 - Interactions of rod-like particles on responsive elastic sheets JF - Soft matter N2 - What are the physical laws of the mutual interactions of objects bound to cell membranes, such as various membrane proteins or elongated virus particles? To rationalise this, we here investigate by extensive computer simulations mutual interactions of rod-like particles adsorbed on the surface of responsive elastic two-dimensional sheets. Specifically, we quantify sheet deformations as a response to adhesion of such filamentous particles. We demonstrate that tip-to-tip contacts of rods are favoured for relatively soft sheets, while side-by-side contacts are preferred for stiffer elastic substrates. These attractive orientation-dependent substrate-mediated interactions between the rod-like particles on responsive sheets can drive their aggregation and self-assembly. The optimal orientation of the membrane-bound rods is established via responding to the elastic energy profiles created around the particles. We unveil the phase diagramme of attractive–repulsive rod–rod interactions in the plane of their separation and mutual orientation. Applications of our results to other systems featuring membrane-associated particles are also discussed. Y1 - 2016 U6 - https://doi.org/10.1039/C6SM01522K SN - 1744-6848 SN - 1744-683X PB - RSC CY - London ER - TY - GEN A1 - Ghosh, Surya K. A1 - Cherstvy, Andrey G. A1 - Petrov, Eugene P. A1 - Metzler, Ralf T1 - Interactions of rod-like particles on responsive elastic sheets N2 - What are the physical laws of the mutual interactions of objects bound to cell membranes, such as various membrane proteins or elongated virus particles? To rationalise this, we here investigate by extensive computer simulations mutual interactions of rod-like particles adsorbed on the surface of responsive elastic two-dimensional sheets. Specifically, we quantify sheet deformations as a response to adhesion of such filamentous particles. We demonstrate that tip-to-tip contacts of rods are favoured for relatively soft sheets, while side-by-side contacts are preferred for stiffer elastic substrates. These attractive orientation-dependent substrate-mediated interactions between the rod-like particles on responsive sheets can drive their aggregation and self-assembly. The optimal orientation of the membrane-bound rods is established via responding to the elastic energy profiles created around the particles. We unveil the phase diagramme of attractive–repulsive rod–rod interactions in the plane of their separation and mutual orientation. Applications of our results to other systems featuring membrane-associated particles are also discussed. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 256 Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-95882 ER - TY - JOUR A1 - Ghosh, Surya K. A1 - Cherstvy, Andrey G. A1 - Petrov, Eugene P. A1 - Metzler, Ralf T1 - Interactions of rod-like particles on responsive elastic sheets JF - Soft matter N2 - What are the physical laws of the mutual interactions of objects bound to cell membranes, such as various membrane proteins or elongated virus particles? To rationalise this, we here investigate by extensive computer simulations mutual interactions of rod-like particles adsorbed on the surface of responsive elastic two-dimensional sheets. Specifically, we quantify sheet deformations as a response to adhesion of such filamentous particles. We demonstrate that tip-to-tip contacts of rods are favoured for relatively soft sheets, while side-by-side contacts are preferred for stiffer elastic substrates. These attractive orientation-dependent substrate-mediated interactions between the rod-like particles on responsive sheets can drive their aggregation and self-assembly. The optimal orientation of the membrane-bound rods is established via responding to the elastic energy profiles created around the particles. We unveil the phase diagramme of attractive-repulsive rod-rod interactions in the plane of their separation and mutual orientation. Applications of our results to other systems featuring membrane-associated particles are also discussed. Y1 - 2016 U6 - https://doi.org/10.1039/c6sm01522k SN - 1744-683X SN - 1744-6848 VL - 12 SP - 7908 EP - 7919 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Cherstvy, Andrey G. A1 - Petrov, Eugene P. T1 - Modeling DNA condensation on freestanding cationic lipid membranes JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Motivated by recent experimental observations of a rapid spontaneous DNA coil-globule transition on freestanding cationic lipid bilayers, we propose simple theoretical models for DNA condensation on cationic lipid membranes. First, for a single DNA rod, we examine the conditions of full wrapping of a cylindrical DNA-like semi-flexible polyelectrolyte by an oppositely charged membrane. Then, for two parallel DNA rods, we self-consistently analyze the shape and the extent of the membrane enveloping them, focusing on membrane elastic deformations and the membrane-DNA embracing angle, which enables us to compute the membrane-mediated DNA-DNA interactions. We examine the effects of the membrane composition and its charge density, which are the experimentally tunable parameters. We show that membrane-driven rod-rod attraction is more pronounced for higher charge densities and for smaller surface tensions of the membrane. Thus, we demonstrate that for a long DNA chain adhered to a cationic lipid membrane, such membrane-induced DNA-DNA attraction can trigger compaction of DNA. Y1 - 2014 U6 - https://doi.org/10.1039/c3cp53433b SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 5 SP - 2020 EP - 2037 PB - Royal Society of Chemistry CY - Cambridge ER -