TY - JOUR A1 - Lesinski, Melanie A1 - Mühlbauer, Thomas A1 - Buesch, Dirk A1 - Granacher, Urs T1 - Acute Effects of Postactivation Potentiation on Strength and Speed Performance in Athletes JF - Sportverletzung, Sportschaden : Grundlagen, Prävention, Rehabilitation N2 - Background: The contractile history of a muscle or a muscle group can result in an acute enhancement of subsequent muscle force output. This phenomenon is referred to as postactivation potentiation (PAP) and it was frequently substantiated in original research manuscripts, systematic literature reviews, and meta-analyses. However, there is a lack in the literature regarding precise dose-response relations. This literature review describes the main determinants of PAP effects and additionally presents the state of the art regarding the acute effects of PAP protocols on measures of strength, power, and speed in subelite and elite athletes of different sport disciplines. Furthermore, an attempt is made to demonstrate evidence-based information concerning the design of effective PAP protocols. Methods: Our literature search included the electronic databases Pubmed, SportDiscus, and Google Scholar (1995 - March 2013). In total, 23 studies met the inclusionary criteria for review. Results: Findings from our literature review indicate that various conditioning activities produce acute PAP effects in subelite and particularly elite athletes. More specifically, conditioning activities that are characterised by multiple sets, moderate to high intensities (60 - 84 % of the one repetition maximum), and rest intervals of 7 - 10 min. following the conditioning activity have the potential to induce short-term improvements in muscle force output and sports performance. Conclusion: It is recommended that subelite and particularly elite athletes from strength, power, and speed disciplines apply specifically tailored conditioning activities during the acute preparation process for competition to induce performance enhancing PAP effects. KW - conditioning stimulus KW - dose-response relationship KW - athletic performance Y1 - 2013 U6 - https://doi.org/10.1055/s-0033-1335414 SN - 0932-0555 SN - 1439-1236 VL - 27 IS - 3 SP - 147 EP - 155 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Prieske, Olaf A1 - Demps, Marie A1 - Lesinski, Melanie A1 - Granacher, Urs T1 - Combined Effects of Fatigue and Surface Instability on Jump Biomechanics in Elite Athletes JF - International journal of sports medicine N2 - The present study aimed to examine the effects of fatigue and surface instability on kinetic and kinematic jump performance measures. Ten female and 10 male elite volleyball players (18 +/- 2 years) performed repetitive vertical double-leg box jumps until failure. Pre and post fatigue, jump height/performance index, ground reaction force and knee flexion/valgus angles were assessed during drop and countermovement jumps on stable and unstable surfaces. Fatigue, surface condition, and sex resulted in significantly lower drop jump performance and ground reaction force (p0.031, 1.1d3.5). Additionally, drop jump knee flexion angles were significantly lower following fatigue (p=0.006, d=1.5). A significant fatiguexsurfacexsex interaction (p=0.020, d=1.2) revealed fatigue-related decrements in drop jump peak knee flexion angles under unstable conditions and in men only. Knee valgus angles were higher on unstable compared to stable surfaces during drop jumps and in females compared to males during drop and countermovement jumps (p0.054, 1.0d1.1). Significant surfacexsex interactions during countermovement jumps (p=0.002, d=1.9) indicated that knee valgus angles at onset of ground contact were significantly lower on unstable compared to stable surfaces in males but higher in females. Our findings revealed that fatigue and surface instability resulted in sex-specific knee motion strategies during jumping in elite volleyball players. KW - stretch-shortening cycle KW - knee joint angle KW - exhaustion KW - injury risk KW - gender Y1 - 2017 U6 - https://doi.org/10.1055/s-0043-111894 SN - 0172-4622 SN - 1439-3964 VL - 38 SP - 781 EP - 790 PB - Thieme CY - Stuttgart ER - TY - GEN A1 - Lesinski, Melanie A1 - Mühlbauer, Thomas A1 - Granacher, Urs T1 - Concurrent validity of the Gyko inertial sensor system for the assessment of vertical jump height in female sub-elite youth soccer players N2 - Background: The aim of the present study was to verify concurrent validity of the Gyko inertial sensor system for the assessment of vertical jump height. - Methods: Nineteen female sub-elite youth soccer players (mean age: 14.7 ± 0.6 years) performed three trials of countermovement (CMJ) and squat jumps (SJ), respectively. Maximal vertical jump height was simultaneously quantified with the Gyko system, a Kistler force-plate (i.e., gold standard), and another criterion device that is frequently used in the field, the Optojump system. - Results: Compared to the force-plate, the Gyko system determined significant systematic bias for mean CMJ (−0.66 cm, p < 0.01, d = 1.41) and mean SJ (−0.91 cm, p < 0.01, d = 1.69) height. Random bias was ± 3.2 cm for CMJ and ± 4.0 cm for SJ height and intraclass correlation coefficients (ICCs) were “excellent” (ICC = 0.87 for CMJ and 0.81 for SJ). Compared to the Optojump device, the Gyko system detected a significant systematic bias for mean CMJ (0.55 cm, p < 0.05, d = 0.94) but not for mean SJ (0.39 cm) height. Random bias was ± 3.3 cm for CMJ and ± 4.2 cm for SJ height and ICC values were “excellent” (ICC = 0.86 for CMJ and 0.82 for SJ). - Conclusion: Consequently, apparatus specific regression equations were provided to estimate true vertical jump height for the Kistler force-plate and the Optojump device from Gyko-derived data. Our findings indicate that the Gyko system cannot be used interchangeably with a Kistler force-plate and the Optojump device in trained individuals. It is suggested that practitioners apply the correction equations to estimate vertical jump height for the force-plate and the Optojump system from Gyko-derived data. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 341 KW - Countermovement jump KW - Squat jump KW - Accelerometer KW - Lower-extremity muscle power KW - Athlete testing KW - Field test Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400967 ER - TY - JOUR A1 - Lesinski, Melanie A1 - Hortobagyi, Tibor A1 - Mühlbauer, Thomas A1 - Gollhofer, Albert A1 - Granacher, Urs T1 - Dose-Response Relationships of Balance Training in Healthy Young Adults: A Systematic Review and Meta-Analysis JF - Sports medicine N2 - Background Balance training (BT) has been used for the promotion of balance and sports-related skills as well as for prevention and rehabilitation of lower extremity sport injuries. However, evidence-based dose-response relationships in BT parameters have not yet been established. Objective The objective of this systematic literature review and meta-analysis was to determine dose-response relationships in BT parameters that lead to improvements in balance in young healthy adults with different training status. Data Sources A computerized systematic literature search was performed in the electronic databases PubMed, Web of Knowledge, and SPORTDiscus from January 1984 up to May 2014 to capture all articles related to BT in young healthy adults. Study Eligibility Criteria A systematic approach was used to evaluate the 596 articles identified for initial review. Only randomized controlled studies were included if they investigated BT in young healthy adults (16-40 years) and tested at least one behavioral balance performance outcome. In total, 25 studies met the inclusion criteria for review. Study Appraisal and Synthesis Methods Studies were evaluated using the physiotherapy evidence database (PEDro) scale. Within-subject effect sizes (ESdw) and between-subject effect sizes (ESdb) were calculated. The included studies were coded for the following criteria: training status (elite athletes, sub-elite athletes, recreational athletes, untrained subjects), training modalities (training period, frequency, volume, etc.), and balance outcome (test for the assessment of steady-state, proactive, and reactive balance). Results Mean ESdb demonstrated that BT is an effective means to improve steady-state (ESdb = 0.73) and proactive balance (ESdb = 0.92) in healthy young adults. Studies including elite athletes showed the largest effects (ESdb = 1.29) on measures of steady-state balance as compared with studies analyzing sub-elite athletes (ESdb = 0.32), recreational athletes (ESdb = 0.69), and untrained subjects (ESdb = 0.82). Our analyses regarding dose-response relationships in BT revealed that a training period of 11-12 weeks (ESdb = 1.09), a training frequency of three (mean ESdb = 0.72) or six (single ESdb = 1.84) sessions per week, at least 16-19 training sessions in total (ESdb = 1.12), a duration of 11-15 min for a single training session (ESdb = 1.11), four exercises per training session (ESdb = 1.29), two sets per exercise (ESdb = 1.63), and a duration of 21-40 s for a single BT exercise (ESdb = 1.06) is most effective in improving measures of steady-state balance. Due to a small number of studies, dose-response relationships of BT for measures of proactive and reactive balance could not be qualified. Limitations The present findings must be interpreted with caution because it is difficult to separate the impact of a single training modality (e.g., training frequency) from that of the others. Moreover, the quality of the included studies was rather limited, with a mean PEDro score of 5. Conclusions Our detailed analyses revealed effective BT parameters for the improvement of steady-state balance. Thus, practitioners and coaches are advised to consult the identified dose-response relationships of this systematic literature review and meta-analysis to implement effective BT protocols in clinical and sports-related contexts. However, further research of high methodological quality is needed to (1) determine dose-response relationships of BT for measures of proactive and reactive balance, (2) define effective sequencing protocols in BT (e.g., BT before or after a regular training session), (3) discern the effects of detraining, and (4) develop a feasible and effective method to regulate training intensity in BT. Y1 - 2015 U6 - https://doi.org/10.1007/s40279-014-0284-5 SN - 0112-1642 SN - 1179-2035 VL - 45 IS - 4 SP - 557 EP - 576 PB - Springer CY - Northcote ER - TY - GEN A1 - Lesinski, Melanie A1 - Hortobagyi, Tibor A1 - Mühlbauer, Thomas A1 - Gollhofer, Albert A1 - Granacher, Urs T1 - Dose-Response Relationships of Balance Training in Healthy Young Adults: A Systematic Review and Meta-Analysis (vol 45, pg 557, 2015) T2 - Sports medicine Y1 - 2016 U6 - https://doi.org/10.1007/s40279-016-0499-8 SN - 0112-1642 SN - 1179-2035 VL - 46 SP - 455 EP - 455 PB - Springer CY - Northcote ER - TY - JOUR A1 - Gebel, Arnd A1 - Lesinski, Melanie A1 - Behm, David George A1 - Granacher, Urs T1 - Effects and dose-response relationship of balance training on balance performance in Youth BT - a systematic review and meta-analysis JF - Sports medicine N2 - Background Effects and dose-response relationships of balance training on measures of balance are well-documented for healthy young and old adults. However, this has not been systematically studied in youth. Objectives The objectives of this systematic review and meta-analysis were to quantify effects of balance training (BT) on measures of static and dynamic balance in healthy children and adolescents. Additionally, dose-response relations for BT modalities (e.g. training period, frequency, volume) were quantified through the analysis of controlled trials. Data Sources A computerized systematic literature search was conducted in the electronic databases PubMed and Web of Science from January 1986 until June 2017 to identify articles related to BT in healthy trained and untrained children and adolescents. Study Eligibility Criteria A systematic approach was used to evaluate articles that examined the effects of BT on balance outcomes in youth. Controlled trials with pre- and post-measures were included if they examined healthy youth with a mean age of 6-19 years and assessed at least one measure of balance (i.e. static/dynamic steady-state balance, reactive balance, proactive balance) with behavioural (e.g. time during single-leg stance) or biomechanical (e.g. centre of pressure displacements during single-leg stance) test methods. Study Appraisal and Synthesis Methods The included studies were coded for the following criteria: training modalities (i.e. training period, frequency, volume), balance outcomes (i.e. static and dynamic balance) as well as chronological age, sex (male vs. female), training status (trained vs. untrained), setting (school vs. club), and testing method (biomechanical vs. physical fitness test). Weighted mean standardized mean differences (SMDwm) were calculated using a random-effects model to compute overall intervention effects relative to active and passive control groups. Between-study heterogeneity was assessed using I 2 and chi(2) statistics. A multivariate random effects meta-regression was computed to explain the influence of key training modalities (i.e. training period, training frequency, total number of training sessions, duration of training sessions, and total duration of training per week) on the effectiveness of BT on measures of balance performance. Further, subgroup univariate analyses were computed for each training modality. Additionally, dose-response relationships were characterized independently by interpreting the modality specific magnitude of effect sizes. Methodological quality of the included studies was rated with the help of the Physiotherapy Evidence Database (PEDro) Scale. Results Overall, our literature search revealed 198 hits of which 17 studies were eligible for inclusion in this systematic review and meta-analysis. Irrespective of age, sex, training status, sport discipline and training method, moderate to large BT-related effects were found for measures of static (SMDwm = 0.71) and dynamic (SMDwm = 1.03) balance in youth. However, our subgroup analyses did not reveal any statistically significant effects of the moderator variables age, sex, training status, setting and testing method on overall balance (i.e. aggregation of static and dynamic balance). BT-related effects in adolescents were moderate to large for measures of static (SMDwm = 0.61) and dynamic (SMDwm = 0.86) balance. With regard to the dose-response relationships, findings from the multivariate random effects meta-regression revealed that none of the examined training modalities predicted the effects of BT on balance performance in adolescents (R-2 = 0.00). In addition, results from univariate analysis have to be interpreted with caution because training modalities were computed as single factors irrespective of potential between-modality interactions. For training period, 12 weeks of training achieved the largest effect (SMDwm = 1.40). For training frequency, the largest effect was found for two sessions per week (SMDwm = 1.29). For total number of training sessions, the largest effect was observed for 24-36 sessions (SMDwm = 1.58). For the modality duration of a single training session, 4-15 min reached the largest effect (SMDwm = 1.03). Finally, for the modality training per week, a total duration of 31-60 min per week (SMDwm = 1.33) provided the largest effects on overall balance in adolescents. Methodological quality of the studies was rated as moderate with a median PEDro score of 6.0. Limitations Dose-response relationships were calculated independently for training modalities (i.e. modality specific) and not interdependently. Training intensity was not considered for the calculation of dose-response relationships because the included studies did not report this training modality. Further, the number of included studies allowed the characterization of dose-response relationships in adolescents for overall balance only. In addition, our analyses revealed a considerable between-study heterogeneity (I-2 = 66-83%). The results of this meta-analysis have to be interpreted with caution due to their preliminary status. Conclusions BT is a highly effective means to improve balance performance with moderate to large effects on static and dynamic balance in healthy youth irrespective of age, sex, training status, setting and testing method. The examined training modalities did not have a moderating effect on balance performance in healthy adolescents. Thus, we conclude that an additional but so far unidentified training modality may have a major effect on balance performance that was not assessed in our analysis. Training intensity could be a promising candidate. However, future studies are needed to find appropriate methods to assess BT intensity. Y1 - 2018 U6 - https://doi.org/10.1007/s40279-018-0926-0 SN - 0112-1642 SN - 1179-2035 VL - 48 IS - 9 SP - 2067 EP - 2089 PB - Springer CY - Northcote ER - TY - JOUR A1 - Lesinski, Melanie A1 - Prieske, Olaf A1 - Granacher, Urs T1 - Effects and dose-response relationships of resistance training on physical performance in youth athletes: a systematic review and meta-analysis JF - British journal of sports medicine : the journal of sport and exercise medicine N2 - Objectives To quantify age, sex, sport and training type-specific effects of resistance training on physical performance, and to characterise dose-response relationships of resistance training parameters that could maximise gains in physical performance in youth athletes. Design Systematic review and meta-analysis of intervention studies. Data sources Studies were identified by systematic literature search in the databases PubMed and Web of Science (1985-2015). Weighted mean standardised mean differences (SMDwm) were calculated using random-effects models. Eligibility criteria for selecting studies Only studies with an active control group were included if these investigated the effects of resistance training in youth athletes (6-18 years) and tested at least one physical performance measure. Results 43 studies met the inclusion criteria. Our analyses revealed moderate effects of resistance training on muscle strength and vertical jump performance (SMDwm 0.8-1.09), and small effects on linear sprint, agility and sport-specific performance (SMDwm 0.58-0.75). Effects were moderated by sex and resistance training type. Independently computed dose-response relationships for resistance training parameters revealed that a training period of >23 weeks, 5 sets/exercise, 6-8 repetitions/set, a training intensity of 80-89% of 1 repetition maximum (RM), and 3-4 min rest between sets were most effective to improve muscle strength (SMDwm 2.09-3.40). Summary/conclusions Resistance training is an effective method to enhance muscle strength and jump performance in youth athletes, moderated by sex and resistance training type. Dose-response relationships for key training parameters indicate that youth coaches should primarily implement resistance training programmes with fewer repetitions and higher intensities to improve physical performance measures of youth athletes. Y1 - 2016 U6 - https://doi.org/10.1136/bjsports-2015-095497 SN - 0306-3674 SN - 1473-0480 VL - 50 SP - 781 EP - 795 PB - BMJ Publishing Group CY - London ER - TY - GEN A1 - Lesinski, Melanie A1 - Hortobagyi, Tibor A1 - Mühlbauer, Thomas A1 - Gollhofer, Albert A1 - Granacher, Urs T1 - Effects of Balance Training on Balance Performance in Healthy Older Adults: A Systematic Review and Meta-analysis (vol 45, pg 1721, 2015) T2 - Sports medicine Y1 - 2016 U6 - https://doi.org/10.1007/s40279-016-0500-6 SN - 0112-1642 SN - 1179-2035 VL - 46 SP - 457 EP - 457 PB - Springer CY - Northcote ER - TY - JOUR A1 - Lesinski, Melanie A1 - Mühlbauer, Thomas A1 - Buesch, Dirk A1 - Granacher, Urs T1 - Effects of complex training on strength and speed performance in athletes: A systematic review effects of complex training on athletic performance JF - Sportverletzung, Sportschaden : Grundlagen, Prävention, Rehabilitation N2 - Background: Post-activation potentiation (PAP) can elicit acute performance enhancements in variables of strength, power, and speed. However, it is unresolved whether the frequent integration of PAP eliciting conditioning activities in training (i.e., complex training) results in long-term adaptations. In this regard, it is of interest to know whether complex training results in larger performance enhancements as compared to more traditional and isolated training regimens (e. g., resistance training). Thus, this systematic literature review summarises the current state of the art regarding the effects of complex training on measures of strength, power, and speed in recreational, subelite, and elite athletes. Further, it provides information on training volume and intensities that proved to be effective. Methods: Our literature search included the electronic databases Pubmed, SportDiscus, and Web of Science (1995 to September 2013). In total, 17 studies met the inclusionary criteria for review. Ten studies examined alternating complex training and 7 studies sequenced complex training. Results: Our findings indicated small to large effects for both alternating complex training (countermovement jump height: +7.4 % [ESd = -0.43]; squat jump height: +9.8 % [ESd = -0.66]; sprint time: -2.4% [ESd = 0.63]) and sequenced complex training (countermovement jump height: +6.0 % [ESd = -0.83]; squat jump height: +11.9% [ESd = -0.97], sprint time: -0.7% [ESd = 0.52]) in measures of power and speed. As compared to more traditional training regimens, alternating and sequenced complex training showed only small effects in measures of strength, power, and speed. A more detailed analysis of alternating complex training revealed larger effects in countermovement jump height in recreational athletes (+9.7% [ESd = -0.57]) as compared to subelite and elite athletes (+2.7% [ESd = -0.15]). Based on the relevant and currently available literature, missing data (e.g., time for rest interval) and diverse information regarding training volume and intensity do not allow us to establish evidence-based dose-response relations for complex training. Conclusion: Complex training represents an effective training regimen for athletes if the goal is to enhance strength, power, and speed. Studies with high methodological quality have to be conducted in the future to elucidate whether complex training is less, similar, or even more effective compared to more traditional training regimens. Finally, it should be clarified whether alternated and/or sequenced conditioning activities implemented in complex training actually elicit acute PAP effects. KW - resistance training KW - plyometric training KW - dose-response relation KW - athletic performance KW - elite sport Y1 - 2014 U6 - https://doi.org/10.1055/s-0034-1366145 SN - 0932-0555 SN - 1439-1236 VL - 28 IS - 2 SP - 85 EP - 107 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Wallenta, Christopher A1 - Granacher, Urs A1 - Lesinski, Melanie A1 - Schuenemann, C. A1 - Mühlbauer, Thomas T1 - Effects of Complex Versus Block Strength Training on the Athletic Performance of Elite Youth Soccer Players JF - Sportverletzung, Sportschaden : Grundlagen, Prävention, Rehabilitation N2 - Hintergrund: Kraft und Schnelligkeit stellen bedeutsame leistungsdeterminierende Faktoren im Fußball dar. Durch Komplextraining (Kombination aus Kraft- und plyometrischen Übungen in einer Trainingseinheit) lassen sich Kraft- und Schnelligkeitswerte von Athleten steigern. Unklar ist jedoch, ob ein Komplextraining (KT) gegenüber einem herkömmlichen blockweisen Krafttraining (BT) zu größeren sportmotorischen Leistungssteigerungen führt. Das Ziel der Studie war es, die Effekte von KT versus BT auf Variablen der Kraft, Schnelligkeit und Gewandtheit von Nachwuchsleistungsfußballern zu untersuchen. Methode: Zusätzlich zum regulären Fußballtraining (ca. 6 × pro Woche, je 60 – 90 min.) führten 18 männliche Nachwuchsleistungsfußballer über sechs Wochen (2 × pro Woche, je 30 min.) entweder ein progressives KT (n = 10, Alter: 18,5 ± 2,2 Jahre) oder BT (n = 8, Alter: 18,1 ± 1,6 Jahre) durch. Vor und nach dem Training wurden Tests zur Erfassung der Kraft (Einer-Wiederholungs-Maximum [EWM] Kniebeuge), der Sprungkraft (Hockstrecksprung [HSS]), der Schnelligkeit (30-m-Sprint) und der Gewandtheit (T-Test) durchgeführt. Es wurden parameterfreie Verfahren zur Bestimmung von Unterschieden innerhalb (Wilcoxon-Test) und zwischen (Mann-Whitney-U-Test) den beiden Gruppen gerechnet. Ergebnisse: Sowohl KT als auch BT sind sichere (keine trainings- aber sechs spielbedingte Verletzungen) und geeignete (Trainingsteilnahme in KT und BT: ≥ 80 %) Trainingsmaßnahmen in Ergänzung zum regulären Fußballtraining. Die statistische Analyse ergab signifikante Verbesserungen vom Prä- zum Posttest für die KT-Gruppe im EWM (p = 0,043) und im HSS (p = 0,046) sowie für die BT-Gruppe in der Sprintzeit über 5 m (p = 0,039) und 10 m (p = 0,026). Zudem zeigten sich für beide Gruppen signifikante Verbesserungen im T-Test (KT: p = 0,046; BT: p = 0,027). Der Gruppenvergleich (KT vs. BT) über die Zeit (Post- minus Prätest) offenbarte keine bedeutsamen Unterschiede. Schlussfolgerung: Sowohl sechswöchiges KT als auch BT führten zu signifikanten Verbesserungen sportmotorischer Leistungen bei Nachwuchsleistungsfußballern. Allerdings konnten keine zusätzlich leistungssteigernden Effekte von KT im Vergleich zu BT ermittelt werden. In zukünftigen Studien sollte geprüft werden, ob die beobachteten testspezifischen Veränderungen, d. h. Verbesserung der Kraft/Sprungkraft in der KT-Gruppe und Verbesserung der Schnelligkeit in der BT-Gruppe der gewählten Übungsanordnung geschuldet sind oder einen generellen Effekt darstellen. Background: Muscle strength and speed are important determinants of soccer performance. It has previously been shown that complex training (CT, combination of strength and plyometric exercises within a single training session) is effective to enhance strength and speed performance in athletes. However, it is unresolved whether CT is more effective than conventional strength training that is delivered in one single block (BT) to increase proxies of athletic performance. Thus, the aim of the present study was to investigate the effects of CT versus BT on measures of muscle strength/power, speed, and agility in elite youth soccer players. Methods: Eighteen male elite youth soccer players conducted six weeks (2 sessions/week, 30 min, each) of progressive CT (n = 10, age: 18,5 +/- 2.2 years) or BT (n=8, age: 18.1 +/- 1.6 years) in addition to their regular soccer training (approx. 6 sessions/week, 60-90 min, each). Before and after training, tests were conducted for the assessment of strength (one -repetition maximum [1RM] squat), power (countermovement jump [CMJ]), speed (30-m linear sprint), and agility (T test). Non-parametric analyses were used to calculate differences within (Wilcoxon test) and between (Mann-Whitney-U test) groups. Results: Both CT and BT proved to be safe (i.e. no training-related, but six match -related injuries reported) and feasible (i.e. attendance rate of 80% in both groups) training regimens when implemented in addition to regular soccer training. The statistical analysis revealed significant improvements from pre-training to post-training tests for the CT group in 1 RM squat (p =0.043) and CMJ height (p =0,046). For the BT -group, significantly enhanced sprint times were observed over 5 m (p = 0.039) and 10 m (p = 0.026), Furthermore, both groups significantly improved their t test time (CT: p =0.046; BT: p =0.027). However, group comparisons (CT vs. BT) over time (post-training minus pre-training test) did not show any significant differences. Conclusion: Six weeks of CT and BT resulted in significant improvements in proxies of athletic performance. Yet CT did not produce any additional effects compared to BT. Future research is needed to examine whether the observed test-specific changes, i.e. improvements in strength/power for the CT-group and improvements in speed for the BT-group, are due to the applied configuration of strength, plyometric, and sprint exercises or if they rather indicate a general training response. KW - strength training KW - jump/sprint exercises KW - youth athletes Y1 - 2016 U6 - https://doi.org/10.1055/s-0041-106949 SN - 0932-0555 SN - 1439-1236 VL - 30 SP - 31 EP - 37 PB - Thieme CY - Stuttgart ER -