TY - GEN A1 - Jantzen, Friederike A1 - Wozniak, Natalia Joanna A1 - Kappel, Christian A1 - Sicard, Adrien A1 - Lenhard, Michael T1 - A high‑throughput amplicon‑based method for estimating outcrossing rates T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Background: The outcrossing rate is a key determinant of the population-genetic structure of species and their long-term evolutionary trajectories. However, determining the outcrossing rate using current methods based on PCRgenotyping individual offspring of focal plants for multiple polymorphic markers is laborious and time-consuming. Results: We have developed an amplicon-based, high-throughput enabled method for estimating the outcrossing rate and have applied this to an example of scented versus non-scented Capsella (Shepherd’s Purse) genotypes. Our results show that the method is able to robustly capture differences in outcrossing rates. They also highlight potential biases in the estimates resulting from differential haplotype sharing of the focal plants with the pollen-donor population at individual amplicons. Conclusions: This novel method for estimating outcrossing rates will allow determining this key population-genetic parameter with high-throughput across many genotypes in a population, enabling studies into the genetic determinants of successful pollinator attraction and outcrossing. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 745 KW - Outcrossing KW - Mixed mating KW - Outcrossing rate KW - Capsella KW - Amplicon sequencing Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435657 SN - 1866-8372 IS - 745 ER - TY - JOUR A1 - Jantzen, Friederike A1 - Wozniak, Natalia Joanna A1 - Kappel, Christian A1 - Sicard, Adrien A1 - Lenhard, Michael T1 - A high‑throughput amplicon‑based method for estimating outcrossing rates JF - Plant Methods N2 - Background: The outcrossing rate is a key determinant of the population-genetic structure of species and their long-term evolutionary trajectories. However, determining the outcrossing rate using current methods based on PCRgenotyping individual offspring of focal plants for multiple polymorphic markers is laborious and time-consuming. Results: We have developed an amplicon-based, high-throughput enabled method for estimating the outcrossing rate and have applied this to an example of scented versus non-scented Capsella (Shepherd’s Purse) genotypes. Our results show that the method is able to robustly capture differences in outcrossing rates. They also highlight potential biases in the estimates resulting from differential haplotype sharing of the focal plants with the pollen-donor population at individual amplicons. Conclusions: This novel method for estimating outcrossing rates will allow determining this key population-genetic parameter with high-throughput across many genotypes in a population, enabling studies into the genetic determinants of successful pollinator attraction and outcrossing. KW - Outcrossing KW - Mixed mating KW - Outcrossing rate KW - Capsella KW - Amplicon sequencing Y1 - 2019 U6 - https://doi.org/10.1186/s13007-019-0433-9 SN - 1746-4811 VL - 15 IS - 47 PB - BioMed Central CY - London ER - TY - JOUR A1 - Kappel, Christian A1 - Cuong Nguyen Huu, A1 - Lenhard, Michael T1 - A short story gets longer: recent insights into the molecular basis of heterostyly JF - Journal of experimental botany N2 - Heterostyly is a fascinating adaptation to promote outbreeding and a classical paradigm of botany. In the most common type of heterostyly, plants either form flowers with long styles and short stamens, or short styles and long stamens. This reciprocal organ positioning reduces pollen wastage and promotes cross-pollination, thus increasing male fitness. In addition, in many heterostylous species selfing and the generation of unfit progeny due to inbreeding depression is limited by a self-incompatibility system, thus promoting female fitness. The two floral forms are genetically determined by the S locus as a complex supergene, namely a chromosomal region containing several individual genes that control the different traits, such as style or stamen length, and are held together by very tight linkage due to suppressed recombination. Recent molecular-genetic studies in several systems, including Turnera, Fagopyrum, Linum, and Primula have begun to identify and characterize the causal heterostyly genes residing at the S locus. An emerging theme from several families is that the dominant S haplotype represents a hemizygous region not present on the recessive s haplotype. This provides an explanation for the suppressed recombination and suggests a scenario for the chromosomal evolution of the S locus. In this review, we discuss the results from recent molecular-genetic analyses in light of the classical models on the genetics and evolution of heterostyly. KW - CYP734A50 KW - distyly KW - GLOBOSA2 KW - hemizygosity KW - heterostyly KW - Primula KW - S locus KW - supergene KW - tristyly Y1 - 2017 U6 - https://doi.org/10.1093/jxb/erx387 SN - 0022-0957 SN - 1460-2431 VL - 68 SP - 5719 EP - 5730 PB - Oxford Univ. Press CY - Oxford ER - TY - GEN A1 - Lenhard, Michael T1 - All's well that ends well BT - arresting cell proliferation in leaves T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The transition from cell proliferation to cell expansion is critical for determining leaf size. Andriankaja et al. (2012) demonstrate that in leaves of dicotyledonous plants, a basal proliferation zone is maintained for several days before abruptly disappearing, and that chloroplast differentiation is required to trigger the onset of cell expansion. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 906 KW - arabidopsis-thaliana KW - genetic-control KW - growth KW - size KW - curvature Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-438035 SN - 1866-8372 IS - 906 SP - 9 EP - 11 ER - TY - INPR A1 - Lenhard, Michael T1 - All's well that ends well arresting cell proliferation in leaves T2 - Developmental cell N2 - The transition from cell proliferation to cell expansion is critical for determining leaf size. Andriankaja et al. (2012) demonstrate that in leaves of dicotyledonous plants, a basal proliferation zone is maintained for several days before abruptly disappearing, and that chloroplast differentiation is required to trigger the onset of cell expansion. Y1 - 2012 U6 - https://doi.org/10.1016/j.devcel.2011.12.004 SN - 1534-5807 VL - 22 IS - 1 SP - 9 EP - 11 PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Czesnick, Hjördis A1 - Lenhard, Michael T1 - Antagonistic control of flowering time by functionally specialized poly(A) polymerases in Arabidopsis thaliana JF - The plant journal N2 - Polyadenylation is a critical 3-end processing step during maturation of pre-mRNAs, and the length of the poly(A) tail affects mRNA stability, nuclear export and translation efficiency. The Arabidopsis thaliana genome encodes three canonical nuclear poly(A) polymerase (PAPS) isoforms fulfilling specialized functions, as reflected by their different mutant phenotypes. While PAPS1 affects several processes, such as the immune response, organ growth and male gametophyte development, the roles of PAPS2 and PAPS4 are largely unknown. Here we demonstrate that PAPS2 and PAPS4 promote flowering in a partially redundant manner. The enzymes act antagonistically to PAPS1, which delays the transition to flowering. The opposite flowering-time phenotypes in paps1 and paps2 paps4 mutants are at least partly due to decreased or increased FLC activity, respectively. In contrast to paps2 paps4 mutants, plants with increased PAPS4 activity flower earlier than the wild-type, concomitant with reduced FLC expression. Double mutant analyses suggest that PAPS2 and PAPS4 act independently of the autonomous pathway components FCA, FY and CstF64. The direct polyadenylation targets of the three PAPS isoforms that mediate their effects on flowering time do not include FLC sense mRNA and remain to be identified. Thus, our results uncover a role for canonical PAPS isoforms in flowering-time control, raising the possibility that modulating the balance of the isoform activities could be used to fine tune the transition to flowering. Significance Statement The length of the poly(A) tail affects mRNA stability, nuclear export and translation efficiency. Arabidopsis has three isoforms of nuclear poly(A) polymerase (PAPS): PAPS1 plays a major role in organ growth and plant defence. Here we show that PAPS2 and PAPS4 redundantly promote flowering and act antagonistically to PAPS1, which delays flowering. We suggest that modulating the activity of these isoforms fine-tunes the transition to flowering. KW - polyadenylation KW - 3-end processing KW - poly(A) polymerase KW - flowering time KW - autonomous pathway KW - Arabidopsis thaliana Y1 - 2016 U6 - https://doi.org/10.1111/tpj.13280 SN - 0960-7412 SN - 1365-313X VL - 88 SP - 570 EP - 583 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Trost, Gerda A1 - Vi, Son Lang A1 - Czesnick, Hjördis A1 - Lange, Peggy A1 - Holton, Nick A1 - Giavalisco, Patrick A1 - Zipfel, Cyril A1 - Kappel, Christian A1 - Lenhard, Michael T1 - Arabidopsis poly(A) polymerase PAPS1 limits founder-cell recruitment to organ primordia and suppresses the salicylic acid-independent immune response downstream of EDS1/PAD4 JF - The plant journal N2 - Polyadenylation of pre-mRNAs by poly(A) polymerase (PAPS) is a critical process in eukaryotic gene expression. As found in vertebrates, plant genomes encode several isoforms of canonical nuclear PAPS enzymes. In Arabidopsis thaliana these isoforms are functionally specialized, with PAPS1 affecting both organ growth and immune response, at least in part by the preferential polyadenylation of subsets of pre-mRNAs. Here, we demonstrate that the opposite effects of PAPS1 on leaf and flower growth reflect the different identities of these organs, and identify a role for PAPS1 in the elusive connection between organ identity and growth patterns. The overgrowth of paps1 mutant petals is due to increased recruitment of founder cells into early organ primordia, and suggests that PAPS1 activity plays unique roles in influencing organ growth. By contrast, the leaf phenotype of paps1 mutants is dominated by a constitutive immune response that leads to increased resistance to the biotrophic oomycete Hyaloperonospora arabidopsidis and reflects activation of the salicylic acid-independent signalling pathway downstream of ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1)/PHYTOALEXIN DEFICIENT4 (PAD4). These findings provide an insight into the developmental and physiological basis of the functional specialization amongst plant PAPS isoforms. KW - poly(A) polymerase KW - founder-cell recruitment KW - organ growth KW - polyadenylation Y1 - 2014 U6 - https://doi.org/10.1111/tpj.12421 SN - 0960-7412 SN - 1365-313X VL - 77 IS - 5 SP - 688 EP - 699 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Bollier, Norbert A1 - Sicard, Adrien A1 - Leblond, Julie A1 - Latrasse, David A1 - Gonzalez, Nathalie A1 - Gevaudant, Frederic A1 - Benhamed, Moussa A1 - Raynaud, Cecile A1 - Lenhard, Michael A1 - Chevalier, Christian A1 - Hernould, Michel A1 - Delmas, Frederic T1 - At-MINI ZINC FINGER2 and Sl-INHIBITOR OF MERISTEM ACTIVITY, a Conserved Missing Link in the Regulation of Floral Meristem Termination in Arabidopsis and Tomato JF - The plant cell N2 - In angiosperms, the gynoecium is the last structure to develop within the flower due to the determinate fate of floral meristem (FM) stem cells. The maintenance of stem cell activity before its arrest at the stage called FM termination affects the number of carpels that develop. The necessary inhibition at this stage of WUSCHEL (WUS), which is responsible for stem cell maintenance, involves a two-step mechanism. Direct repression mediated by the MADS domain transcription factor AGAMOUS (AG), followed by indirect repression requiring the C2H2 zinc-finger protein KNUCKLES (KNU), allow for the complete termination of floral stem cell activity. Here, we show that Arabidopsis thaliana MINI ZINC FINGER2 (AtMIF2) and its homolog in tomato (Solanum lycopersicum), INHIBITOR OF MERISTEM ACTIVITY (SlIMA), participate in the FM termination process by functioning as adaptor proteins. AtMIF2 and SlIMA recruit AtKNU and SlKNU, respectively, to form a transcriptional repressor complex together with TOPLESS and HISTONE DEACETYLASE19. AtMIF2 and SlIMA bind to the WUS and SIWUS loci in the respective plants, leading to their repression. These results provide important insights into the molecular mechanisms governing (FM) termination and highlight the essential role of AtMIF2/SlIMA during this developmental step, which determines carpel number and therefore fruit size. Y1 - 2018 U6 - https://doi.org/10.1105/tpc.17.00653 SN - 1040-4651 SN - 1532-298X VL - 30 IS - 1 SP - 83 EP - 100 PB - American Society of Plant Physiologists CY - Rockville ER - TY - JOUR A1 - Fujikura, Ushio A1 - Elsaesser, Lore A1 - Breuninger, Holger A1 - Sanchez-Rodriguez, Clara A1 - Ivakov, Alexander A1 - Laux, Thomas A1 - Findlay, Kim A1 - Persson, Staffan A1 - Lenhard, Michael T1 - Atkinesin-13A modulates cell-wall synthesis and cell expansion in arabidopsis thaliana via the THESEUS1 pathway JF - PLoS Genetics : a peer-reviewed, open-access journal N2 - Growth of plant organs relies on cell proliferation and expansion. While an increasingly detailed picture about the control of cell proliferation is emerging, our knowledge about the control of cell expansion remains more limited. We demonstrate the internal-motor kinesin AtKINESIN-13A (AtKIN13A) limits cell expansion and cell size in Arabidopsis thaliana, ion atkinl3a mutants forming larger petals with larger cells. The homolog, AtKINESIN-13B, also affects cell expansion and double mutants display growth, gametophytic and early embryonic defects, indicating a redundant role of he two genes. AtKIN13A is known to depolymerize microtubules and influence Golgi motility and distribution. Consistent his function, AtKIN13A interacts genetically with ANGUSTIFOLIA, encoding a regulator of Golgi dynamics. Reduced AtIGN13A activity alters cell wall structure as assessed by Fourier-transformed infrared-spectroscopy and triggers signalling he THESEUS1-dependent cell-wall integrity pathway, which in turn promotes the excess cell expansion in the atkinl3a mutant. Thus, our results indicate that the intracellular activity of AtKIN13A regulates cell expansion and wall architecture via THESEUS1, providing a compelling case of interplay between cell wall integrity sensing and expansion. Y1 - 2014 U6 - https://doi.org/10.1371/journal.pgen.1004627 SN - 1553-7390 SN - 1553-7404 VL - 10 IS - 9 PB - PLoS CY - San Fransisco ER - TY - GEN A1 - Sicard, Adrien A1 - Lenhard, Michael T1 - Capsella T2 - Current biology Y1 - 2018 U6 - https://doi.org/10.1016/j.cub.2018.06.033 SN - 0960-9822 SN - 1879-0445 VL - 28 IS - 17 SP - R920 EP - R921 PB - Cell Press CY - Cambridge ER -