TY - JOUR A1 - Luetkecosmann, Steffi A1 - Faupel, Thomas A1 - Porstmann, Silvia A1 - Porstmann, Tomas A1 - Micheel, Burkhard A1 - Hanack, Katja T1 - A cross-reactive monoclonal antibody as universal detection antibody in autoantibody diagnostic assays JF - Clinica chimica acta N2 - Diagnostics of Autoimmune Diseases involve screening of patient samples for containing autoantibodies against various antigens. To ensure quality of diagnostic assays a calibrator is needed in each assay system. Different calibrators as recombinant human monoclonal antibodies as well as chimeric antibodies against the autoantigens of interest are described. A less cost-intensive and also more representative possibility covering different targets on the antigens is the utilization of polyclonal sera from other species. Nevertheless, the detection of human autoantibodies as well as the calibration reagent containing antibodies from other species in one assay constitutes a challenge in terms of assay calibration. We therefore developed a cross-reactive monoclonal antibody which binds human as well as rabbit sera with similar affinities in the nanomolar range. We tested our monoclonal antibody S38CD11B12 successfully in the commercial Serazym (R) Anti-Cardiolipin-beta 2-GPI IgG/IgM assay and could thereby prove the eligibility of S38CD11B12 as detection antibody in autoimmune diagnostic assays using rabbit derived sera as reference material. KW - Monoclonal antibody KW - Detection KW - Autoimmune diagnostics KW - Cross reactivity KW - Assay calibration Y1 - 2019 U6 - https://doi.org/10.1016/j.cca.2019.09.003 SN - 0009-8981 SN - 1873-3492 VL - 499 SP - 87 EP - 92 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Göthel, Markus A1 - Listek, Martin A1 - Messerschmidt, Katrin A1 - Schlör, Anja A1 - Hönow, Anja A1 - Hanack, Katja T1 - A New Workflow to Generate Monoclonal Antibodies against Microorganisms T2 - Mathematisch-Naturwissenschaftliche Reihe N2 - Monoclonal antibodies are used worldwide as highly potent and efficient detection reagents for research and diagnostic applications. Nevertheless, the specific targeting of complex antigens such as whole microorganisms remains a challenge. To provide a comprehensive workflow, we combined bioinformatic analyses with novel immunization and selection tools to design monoclonal antibodies for the detection of whole microorganisms. In our initial study, we used the human pathogenic strain E. coli O157:H7 as a model target and identified 53 potential protein candidates by using reverse vaccinology methodology. Five different peptide epitopes were selected for immunization using epitope-engineered viral proteins. The identification of antibody-producing hybridomas was performed by using a novel screening technology based on transgenic fusion cell lines. Using an artificial cell surface receptor expressed by all hybridomas, the desired antigen-specific cells can be sorted fast and efficiently out of the fusion cell pool. Selected antibody candidates were characterized and showed strong binding to the target strain E. coli O157:H7 with minor or no cross-reactivity to other relevant microorganisms such as Legionella pneumophila and Bacillus ssp. This approach could be useful as a highly efficient workflow for the generation of antibodies against microorganisms. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1174 KW - monoclonal antibody KW - antibody producing cell selection KW - hybridoma KW - epitope prediction Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-523341 SN - 1866-8372 IS - 20 ER - TY - JOUR A1 - Göthel, Markus A1 - Listek, Martin A1 - Messerschmidt, Katrin A1 - Schlör, Anja A1 - Hönow, Anja A1 - Hanack, Katja T1 - A New Workflow to Generate Monoclonal Antibodies against Microorganisms JF - Applied Sciences N2 - Monoclonal antibodies are used worldwide as highly potent and efficient detection reagents for research and diagnostic applications. Nevertheless, the specific targeting of complex antigens such as whole microorganisms remains a challenge. To provide a comprehensive workflow, we combined bioinformatic analyses with novel immunization and selection tools to design monoclonal antibodies for the detection of whole microorganisms. In our initial study, we used the human pathogenic strain E. coli O157:H7 as a model target and identified 53 potential protein candidates by using reverse vaccinology methodology. Five different peptide epitopes were selected for immunization using epitope-engineered viral proteins. The identification of antibody-producing hybridomas was performed by using a novel screening technology based on transgenic fusion cell lines. Using an artificial cell surface receptor expressed by all hybridomas, the desired antigen-specific cells can be sorted fast and efficiently out of the fusion cell pool. Selected antibody candidates were characterized and showed strong binding to the target strain E. coli O157:H7 with minor or no cross-reactivity to other relevant microorganisms such as Legionella pneumophila and Bacillus ssp. This approach could be useful as a highly efficient workflow for the generation of antibodies against microorganisms. KW - monoclonal antibody KW - antibody producing cell selection KW - hybridoma KW - epitope prediction Y1 - 2021 U6 - https://doi.org/10.3390/app11209359 SN - 1454-5101 VL - 11 IS - 20 PB - MDPI CY - Basel ER - TY - JOUR A1 - Lütkecosmann, Steffi A1 - Warsinke, Axel A1 - Tschöpe, Winfried A1 - Eichler, Rüdiger A1 - Hanack, Katja T1 - A novel monoclonal antibody suitable for the detection of leukotriene B4 JF - Biochemical and biophysical research communications N2 - Leukotriene B4 as an inflammatory mediator is an important biomarker for different respiratory diseases like asthma, chronic obstructive pulmonary disease or cystic lung fibrosis. Therefore the detection of LTB4 is helpful in the diagnosis of these pulmonary diseases. However, until now its determination in exhaled breath condensates suffers from problems of accuracy. Reasons for that could be improper sample collection and preparation methods of condensates and the lack of consistently assay specificity and reproducibility of the used immunoassay detection system. In this study we describe the development and the characterization of a specific monoclonal antibody (S27BC6) against LTB4, its use as molecular recognition element for the development of an enzyme-linked immunoassay to detect LTB4 and discuss possible future diagnostic applications. KW - Leukotriene B4 KW - Monoclonal antibody KW - Immunosensor KW - Chronic obstructive pulmonary disease (COPD) KW - Hapten Y1 - 2017 U6 - https://doi.org/10.1016/j.bbrc.2016.11.157 SN - 0006-291X SN - 1090-2104 VL - 482 IS - 4 SP - 1054 EP - 1059 PB - Elsevier CY - San Diego ER - TY - GEN A1 - Listek, Martin A1 - Hönow, Anja A1 - Gossen, Manfred A1 - Hanack, Katja T1 - A novel selection strategy for antibody producing hybridoma cells based on a new transgenic fusion cell line T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - The use of monoclonal antibodies is ubiquitous in science and biomedicine but the generation and validation process of antibodies is nevertheless complicated and time-consuming. To address these issues we developed a novel selective technology based on an artificial cell surface construct by which secreted antibodies were connected to the corresponding hybridoma cell when they possess the desired antigen-specificity. Further the system enables the selection of desired isotypes and the screening for potential cross-reactivities in the same context. For the design of the construct we combined the transmembrane domain of the EGF-receptor with a hemagglutinin epitope and a biotin acceptor peptide and performed a transposon-mediated transfection of myeloma cell lines. The stably transfected myeloma cell line was used for the generation of hybridoma cells and an antigen- and isotype-specific screening method was established. The system has been validated for globular protein antigens as well as for haptens and enables a fast and early stage selection and validation of monoclonal antibodies in one step. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 865 KW - Antibody generation KW - Assay systems Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459893 SN - 1866-8372 IS - 865 ER - TY - JOUR A1 - Listek, Martin A1 - Hönow, Anja A1 - Gossen, Manfred A1 - Hanack, Katja T1 - A novel selection strategy for antibody producing hybridoma cells based on a new transgenic fusion cell line JF - Scientific Reports N2 - The use of monoclonal antibodies is ubiquitous in science and biomedicine but the generation and validation process of antibodies is nevertheless complicated and time-consuming. To address these issues we developed a novel selective technology based on an artificial cell surface construct by which secreted antibodies were connected to the corresponding hybridoma cell when they possess the desired antigen-specificity. Further the system enables the selection of desired isotypes and the screening for potential cross-reactivities in the same context. For the design of the construct we combined the transmembrane domain of the EGF-receptor with a hemagglutinin epitope and a biotin acceptor peptide and performed a transposon-mediated transfection of myeloma cell lines. The stably transfected myeloma cell line was used for the generation of hybridoma cells and an antigen- and isotype-specific screening method was established. The system has been validated for globular protein antigens as well as for haptens and enables a fast and early stage selection and validation of monoclonal antibodies in one step. KW - Antibody generation KW - Assay systems Y1 - 2019 U6 - https://doi.org/10.1038/s41598-020-58571-w SN - 2045-2322 VL - 10 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - JOUR A1 - Roggenbuck, Dirk A1 - Borghi, Maria Orietta A1 - Somma, Valentina A1 - Buettner, Thomas A1 - Schierack, Peter A1 - Hanack, Katja A1 - Grossi, Claudia A1 - Bodio, Caterina A1 - Macor, Paolo A1 - von Landenberg, Philipp A1 - Boccellato, Francesco A1 - Mahler, Michael A1 - Meroni, Pier Luigi T1 - Antiphospholipid antibodies detected by line immunoassay differentiate among patients with antiphospholipid syndrome, with infections and asymptomatic carriers JF - IEEE transactions on geoscience and remote sensing N2 - Background: Antiphospholipid antibodies (aPL) can be detected in asymptomatic carriers and infectious patients. The aim was to investigate whether a novel line immunoassay (LIA) differentiates between antiphospholipid syndrome (APS) and asymptomatic aPL+ carriers or patients with infectious diseases (infectious diseases controls (IDC)). Methods: Sixty-one patients with APS (56 primary, 22/56 with obstetric events only, and 5 secondary), 146 controls including 24 aPL+ asymptomatic carriers and 73 IDC were tested on a novel hydrophobic solid phase coated with cardiolipin (CL), phosphatic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylserine, beta2-glycoprotein I (beta 2GPI), prothrombin, and annexin V. Samples were also tested by anti-CL and anti-beta 2GPI ELISAs and for lupus anticoagulant activity. Human monoclonal antibodies (humoAbs) against human beta 2GPI or PL alone were tested on the same LIA substrates in the absence or presence of human serum, purified human beta 2GPI or after CL-micelle absorption. Results: Comparison of LIA with the aPL-classification assays revealed good agreement for IgG/IgM a beta 2GPI and aCL. Anti-CL and anti-beta 2GPI IgG/IgM reactivity assessed by LIA was significantly higher in patients with APS versus healthy controls and IDCs, as detected by ELISA. IgG binding to CL and beta 2GPI in the LIA was significantly lower in aPL+ carriers and Venereal Disease Research Laboratory test (VDRL) + samples than in patients with APS. HumoAb against domain 1 recognized beta 2GPI bound to the LIA-matrix and in anionic phospholipid (PL) complexes. Absorption with CL micelles abolished the reactivity of a PL-specific humoAb but did not affect the binding of anti-beta 2GPI humoAbs. Conclusions: The LIA and ELISA have good agreement in detecting aPL in APS, but the LIA differentiates patients with APS from infectious patients and asymptomatic carriers, likely through the exposure of domain 1. KW - Antiphospholipid syndrome KW - Antiphospholipid antibody KW - Phospholipid binding proteins KW - Beta2-glycoprotein I KW - Line immunoassay Y1 - 2016 U6 - https://doi.org/10.1186/s13075-016-1018-x SN - 1478-6354 SN - 1478-6362 VL - 18 PB - BioMed Central CY - London ER - TY - GEN A1 - Roggenbuck, Dirk A1 - Borghi, Maria Orietta A1 - Somma, Valentina A1 - Büttner, Thomas A1 - Schierack, Peter A1 - Hanack, Katja A1 - Grossi, Claudia A1 - Bodio, Caterina A1 - Macor, Paolo A1 - von Landenberg, Philipp A1 - Boccellato, Francesco A1 - Mahler, Michael A1 - Meroni, Pier Luigi T1 - Antiphospholipid antibodies detected by line immunoassay differentiate among patients with antiphospholipid syndrome, with infections and asymptomatic carriers T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Background Antiphospholipid antibodies (aPL) can be detected in asymptomatic carriers and infectious patients. The aim was to investigate whether a novel line immunoassay (LIA) differentiates between antiphospholipid syndrome (APS) and asymptomatic aPL+ carriers or patients with infectious diseases (infectious diseases controls (IDC)). Methods Sixty-one patients with APS (56 primary, 22/56 with obstetric events only, and 5 secondary), 146 controls including 24 aPL+ asymptomatic carriers and 73 IDC were tested on a novel hydrophobic solid phase coated with cardiolipin (CL), phosphatic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol, phosphatidylserine, beta2-glycoprotein I (β2GPI), prothrombin, and annexin V. Samples were also tested by anti-CL and anti-β2GPI ELISAs and for lupus anticoagulant activity. Human monoclonal antibodies (humoAbs) against human β2GPI or PL alone were tested on the same LIA substrates in the absence or presence of human serum, purified human β2GPI or after CL-micelle absorption. Results Comparison of LIA with the aPL-classification assays revealed good agreement for IgG/IgM aß2GPI and aCL. Anti-CL and anti-ß2GPI IgG/IgM reactivity assessed by LIA was significantly higher in patients with APS versus healthy controls and IDCs, as detected by ELISA. IgG binding to CL and ß2GPI in the LIA was significantly lower in aPL+ carriers and Venereal Disease Research Laboratory test (VDRL) + samples than in patients with APS. HumoAb against domain 1 recognized β2GPI bound to the LIA-matrix and in anionic phospholipid (PL) complexes. Absorption with CL micelles abolished the reactivity of a PL-specific humoAb but did not affect the binding of anti-β2GPI humoAbs. Conclusions The LIA and ELISA have good agreement in detecting aPL in APS, but the LIA differentiates patients with APS from infectious patients and asymptomatic carriers, likely through the exposure of domain 1. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 436 KW - Antiphospholipid syndrome KW - Antiphospholipid antibody KW - Phospholipid binding proteins KW - Beta2 - glycoprotein I KW - Line immunoassay Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407211 SN - 1866-8372 IS - 436 ER - TY - GEN A1 - Hanack, Katja A1 - Schloer, Anja A1 - Holzloehner, Pamela A1 - Listek, Martin A1 - Bauer, Cindy A1 - Butze, Monique A1 - Micheel, Burkhard A1 - Hentschel, Christian A1 - Sowa, Mandy A1 - Roggenbuck, Dirk A1 - Schierack, Peter A1 - Fuener, Jonas A1 - Schliebs, Erik A1 - Goihl, Alexander A1 - Reinhold, Dirk T1 - Camelid nanobodies specific to human pancreatic glycoprotein 2 T2 - The journal of immunology N2 - Pancreatic secretory zymogen-granule membrane glycoprotein 2 (GP2) has been identified to be a major autoantigenic target in Crohn’s disease patients. It was discussed recently that a long and a short isoform of GP2 exists whereas the short isoform is often detected by GP2-specific autoantibodies. In the outcome of inflammatory bowel diseases, these GP2-specific autoantibodies are discussed as new serological markers for diagnosis and therapeutic monitoring. To investigate this further, camelid nanobodies were generated by phage display and selected against the short isoform of GP2 in order to isolate specific tools for the discrimination of both isoforms. Nanobodies are single domain antibodies derived from camelid heavy chain only antibodies and characterized by a high stability and solubility. The selected candidates were expressed, purified and validated regarding their binding properties in different enzyme-linked immunosorbent assays formats, immunofluorescence, immunohistochemistry and surface plasmon resonance spectroscopy. Four different nanobodies could be selected whereof three recognize the short isoform of GP2 very specifically and one nanobody showed a high binding capacity for both isoforms. The KD values measured for all nanobodies were between 1.3 nM and 2.3 pM indicating highly specific binders suitable for the application as diagnostic tool in inflammatory bowel disease. Y1 - 2016 SN - 0022-1767 SN - 1550-6606 VL - 196 SP - 313 EP - 328 PB - American Assoc. of Immunologists CY - Bethesda ER - TY - GEN A1 - Maier, Natalia A1 - Holzlöhner, Pamela A1 - Hoenow, Anja A1 - Scheunemann, Astrid A1 - Weschke, Daniel A1 - Hanack, Katja T1 - Characterization of monoclonal antibodies generated by in vitro immunization T2 - The journal of immunology N2 - Monoclonal antibodies are highly valuable tools in biomedicine but the generation by hybridoma technology is very time-consuming and elaborate. In order to circumvent the consisting drawbacks an in vitro immunization approach was established by which murine as well as human monoclonal antibodies against a viral coat protein could be developed. The in vitro immunization process was performed by isolation of murine hematopoietic stem cells or human monocytes and an in vitro differentiation into immature dendritic cells. After antigen loading the cells were co-cultivated with naive T and B lymphocytes for three days in order to obtain antigen-specific B lymphocytes in culture, followed by fusion with murine myeloma cells or human/murine heteromyeloma cells. Antigen-specific hybridomas were selected and the generated antibodies were purified and characterized in this study by ELISA, western blot, gene sequencing, affinity measurements. Further the characteristics were compared to a monoclonal antibody against the same target generated by conventional hybridoma technology. Isotype detection revealed a murine IgM and a human IgG4 antibody in comparison to an IgG1 for the conventionally generated antibody. The antibodies derived from in vitro immunization showed indeed a lower affinity for the antigen as compared to the conventionally generated one, which is probably based on the significantly shorter B cell maturation (3 days) during the immunization process. Nevertheless, they were suitable for building up a sandwich based detection system. Therefore, the in vitro immunization approach seems to be a good and particularly fast alternative to conventional hybridoma technology. Y1 - 2016 SN - 0022-1767 SN - 1550-6606 VL - 196 PB - American Assoc. of Immunologists CY - Bethesda ER -