TY - JOUR A1 - Dahlke, Sandro A1 - Solbès, Amélie A1 - Maturilli, Marion T1 - Cold air outbreaks in fram strait: climatology, trends, and observations during an extreme season in 2020 JF - Journal of geophysical research : atmospheres N2 - Fram Strait in the northern North Atlantic is a key region for marine cold air outbreaks (MCAOs), southward discharges of polar air under northerly air flow, which have a strong impact on air-sea heat fluxes, boundary layer processes and severe weather. This study investigates climatologies and decadal trends of Fram Strait MCAOs of different intensity classes based on the ERA5 reanalysis product for 1979-2020. Among striking interannual variability, it is shown that the main MCAO season is December through March, when MCAOs occur around 2/3 of the time. We report on significant decadal MCAO decreases in December and January, and a significant increase in March. While the mid-winter decrease is mainly related to the different paces of warming between the surface and the lower atmosphere, the increase in March can be related to changes in synoptic circulation patterns. As an explanation for the latter, a possible feedback between retreating Barents Sea sea ice, enhanced cyclonic activity and Fram Strait MCAOs is postulated. Exemplifying the trend toward stronger MCAOs during March, the study details the recordbreaking MCAO season in early 2020, and an observational case study of an extreme MCAO event in March 2020 is conducted. Thereby, radiosonde observations are combined with kinematic air back-trajectories to provide rare observational evidence for the diabatic cooling and drying during the MCAO preconditioning phase. KW - cold air outbreak KW - North Atlantic variability KW - air mass transformation; KW - ocean-atmosphere energy exchange Y1 - 2022 U6 - https://doi.org/10.1029/2021JD035741 SN - 2169-897X SN - 2169-8996 VL - 127 IS - 3 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Dahlke, Sandro A1 - Maturilli, Marion T1 - Contribution of atmospheric advection to the amplified winter warming in the arctic north atlantic region JF - Advances in meteorology N2 - Arctic Amplification of climate warming is caused by various feedback processes in the atmosphere-ocean-ice system and yields the strongest temperature increase during winter in the Arctic North Atlantic region. In our study, we attempt to quantify the advective contribution to the observed atmospheric warming in the Svalbard area. Based on radiosonde measurements from Ny-Ålesund, a strong dependence of the tropospheric temperature on the synoptic flow direction is revealed. Using FLEXTRA backward trajectories, an increase of advection from the lower latitude Atlantic region towards Ny-Ålesund is found that is attributed to a change in atmospheric circulation patterns. We find that about one-quarter (0.45 K per decade) of the observed atmospheric winter near surface warming trend in the North Atlantic region of the Arctic (2 K per decade) is due to increased advection of warm and moist air from the lower latitude Atlantic region, affecting the entire troposphere. Y1 - 2017 U6 - https://doi.org/10.1155/2017/4928620 SN - 1687-9309 SN - 1687-9317 PB - Hindawi Publ. Corp. CY - New York ER - TY - JOUR A1 - Knudsen, Erlend Moster A1 - Heinold, Bernd A1 - Dahlke, Sandro A1 - Bozem, Heiko A1 - Crewell, Susanne A1 - Gorodetskaya, Irina V. A1 - Heygster, Georg A1 - Kunkel, Daniel A1 - Maturilli, Marion A1 - Mech, Mario A1 - Viceto, Carolina A1 - Rinke, Annette A1 - Schmithusen, Holger A1 - Ehrlich, Andre A1 - Macke, Andreas A1 - Lüpkes, Christof A1 - Wendisch, Manfred T1 - Meteorological conditions during the ACLOUD/PASCAL field campaign near Svalbard in early summer 2017 JF - Atmospheric chemistry and physics N2 - The two concerted field campaigns, Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) and the Physical feedbacks of Arctic planetary boundary level Sea ice, Cloud and AerosoL (PASCAL), took place near Svalbard from 23 May to 26 June 2017. They were focused on studying Arctic mixed-phase clouds and involved observations from two airplanes (ACLOUD), an icebreaker (PASCAL) and a tethered balloon, as well as ground-based stations. Here, we present the synoptic development during the 35-day period of the campaigns, using near-surface and upper-air meteorological observations, as well as operational satellite, analysis, and reanalysis data. Over the campaign period, short-term synoptic variability was substantial, dominating over the seasonal cycle. During the first campaign week, cold and dry Arctic air from the north persisted, with a distinct but seasonally unusual cold air outbreak. Cloudy conditions with mostly low-level clouds prevailed. The subsequent 2 weeks were characterized by warm and moist maritime air from the south and east, which included two events of warm air advection. These synoptical disturbances caused lower cloud cover fractions and higher-reaching cloud systems. In the final 2 weeks, adiabatically warmed air from the west dominated, with cloud properties strongly varying within the range of the two other periods. Results presented here provide synoptic information needed to analyze and interpret data of upcoming studies from ACLOUD/PASCAL, while also offering unprecedented measurements in a sparsely observed region. Y1 - 2018 U6 - https://doi.org/10.5194/acp-18-17995-2018 SN - 1680-7316 SN - 1680-7324 VL - 18 IS - 24 SP - 17995 EP - 18022 PB - Copernicus CY - Göttingen ER - TY - THES A1 - Dahlke, Sandro T1 - Rapid climate changes in the arctic region of Svalbard T1 - Aktuelle Klimaänderungen in der Svalbard-Region BT - processes, implications and representativeness for the broader Arctic BT - Prozesse, Auswirkungen und Repräsentativität für die Arktis N2 - Over the last decades, the Arctic regions of the earth have warmed at a rate 2–3 times faster than the global average– a phenomenon called Arctic Amplification. A complex, non-linear interplay of physical processes and unique pecularities in the Arctic climate system is responsible for this, but the relative role of individual processes remains to be debated. This thesis focuses on the climate change and related processes on Svalbard, an archipelago in the North Atlantic sector of the Arctic, which is shown to be a "hotspot" for the amplified recent warming during winter. In this highly dynamical region, both oceanic and atmospheric large-scale transports of heat and moisture interfere with spatially inhomogenous surface conditions, and the corresponding energy exchange strongly shapes the atmospheric boundary layer. In the first part, Pan-Svalbard gradients in the surface air temperature (SAT) and sea ice extent (SIE) in the fjords are quantified and characterized. This analysis is based on observational data from meteorological stations, operational sea ice charts, and hydrographic observations from the adjacent ocean, which cover the 1980–2016 period. It is revealed that typical estimates of SIE during late winter range from 40–50% (80–90%) in the western (eastern) parts of Svalbard. However, strong SAT warming during winter of the order of 2–3K per decade dictates excessive ice loss, leaving fjords in the western parts essentially ice-free in recent winters. It is further demostrated that warm water currents on the west coast of Svalbard, as well as meridional winds contribute to regional differences in the SIE evolution. In particular, the proximity to warm water masses of the West Spitsbergen Current can explain 20–37% of SIE variability in fjords on west Svalbard, while meridional winds and associated ice drift may regionally explain 20–50% of SIE variability in the north and northeast. Strong SAT warming has overruled these impacts in recent years, though. In the next part of the analysis, the contribution of large-scale atmospheric circulation changes to the Svalbard temperature development over the last 20 years is investigated. A study employing kinematic air-back trajectories for Ny-Ålesund reveals a shift in the source regions of lower-troposheric air over time for both the winter and the summer season. In winter, air in the recent decade is more often of lower-latitude Atlantic origin, and less frequent of Arctic origin. This affects heat- and moisture advection towards Svalbard, potentially manipulating clouds and longwave downward radiation in that region. A closer investigation indicates that this shift during winter is associated with a strengthened Ural blocking high and Icelandic low, and contributes about 25% to the observed winter warming on Svalbard over the last 20 years. Conversely, circulation changes during summer include a strengthened Greenland blocking high which leads to more frequent cold air advection from the central Arctic towards Svalbard, and less frequent air mass origins in the lower latitudes of the North Atlantic. Hence, circulation changes during winter are shown to have an amplifying effect on the recent warming on Svalbard, while summer circulation changes tend to mask warming. An observational case study using upper air soundings from the AWIPEV research station in Ny-Ålesund during May–June 2017 underlines that such circulation changes during summer are associated with tropospheric anomalies in temperature, humidity and boundary layer height. In the last part of the analysis, the regional representativeness of the above described changes around Svalbard for the broader Arctic is investigated. Therefore, the terms in the diagnostic temperature equation in the Arctic-wide lower troposphere are examined for the Era-Interim atmospheric reanalysis product. Significant positive trends in diabatic heating rates, consistent with latent heat transfer to the atmosphere over regions of increasing ice melt, are found for all seasons over the Barents/Kara Seas, and in individual months in the vicinity of Svalbard. The above introduced warm (cold) advection trends during winter (summer) on Svalbard are successfully reproduced. Regarding winter, they are regionally confined to the Barents Sea and Fram Strait, between 70°–80°N, resembling a unique feature in the whole Arctic. Summer cold advection trends are confined to the area between eastern Greenland and Franz Josef Land, enclosing Svalbard. N2 - Die Arktis hast sich über die letzten Jahrzehnte etwa 2–3 mal so schnell erwärmt wie die globale Mitteltemperatur der Erde, wofür der Begriff Arktische Verstärkung geprägt wurde. Eine komplexe Kaskade nichtlinear miteinander interagierender Prozesse und lokaler Bedingungen ist für das Auftreten dieses Phänomens verantwortlich, jedoch bleibt ein wissenschaftlicher Konsens zur Quantifizierung einzelner beteiligter Prozesse noch aus. Diese Arbeit befasst sich mit den Klimaänderungen und assoziierten Prozessen in der Svalbard-Region, einem arktischen Archipel im Nordatlantik. Svalbard kann als Brennpunkt der arktischen Veränderungen bezeichnet werden, vor allem während des Winters. In dieser ausgesprochen dynamischen Region interagieren die Energieflüsse durch großskalige atmosphärische und ozeanische Wärme- und Feuchtetransporte mit der heteorogenen Oberfläche, die sich aus Eis-, Wasser-, oder Landflächen zusammensetzt. Die daraus resultierenden horizontalen und vertikalen Energieflüsse stehen in engem Zusammenhang mit der Beschaffenheit der atmosphärischen Grenzschicht. Im ersten Teil dieser Arbeit werden laterale Unterschiede in der Oberflächentemperatur (SAT), sowie der Meereisbedeckung (SIE) in den Fjorden und Sunden des Archipels quantifiziert und klassifiziert. Dies geschieht auf der Grundlage von meteorologischen Stationsmessdaten und operationellen Eisbedeckungskarten der Jahe 1980–2016. Es zeigt sich, dass prozentuale Eisbedeckungen im Osten des Studiengebietes typischerweise 80–90% im Winter erreichen, während diese Werte in Fjorden der Westküste mit 40–50% deutlich niedriger liegen. Allerdings bedingt eine starke, winterliche SAT Erwärmung von 2–3K pro Jahrzehnt signifikante SIE Abwärtstrends, sodass die Fjorde im Westen von Svalbard in den jüngeren Wintern üblicherweise eisfrei waren. Im Weiteren wird gezeigt dass die warmen Ozeanströmungen nahe der Westküste, sowie spezielle Windkonstellationen, einen signifikanten regionalen Einfluss auf die langzeitliche Entwicklung der Meereisbedeckung ausüben. So kann Variabilität in der Temperatur des Westspitzbergenstroms etwa 20–37% der zwischenjährlichen SIE Variabilität in den Fjorden der Westküste erklären. Die meridionale Atmosphärenströmung nordwestlich von Spitzbergen, die hochkorelliert mit Eisdrift ist, kann andererseits –regional abhängig– etwa 20–50% der SIE-Variablität in den nördlichen und nordöstlichen Fjorden erklären. Durch den starken temperaturbedingten Eisrückgang in der gesamten Region sind diese Einflüsse zuletzt jedoch stark abgeschwächt. Im Folgenden wird der Beitrag von Zirkulationsänderungen zur Temperaturentwicklung Svalbards während der letzten 20 Jahre untersucht. Die Analyse basiert auf den Quellregionen troposphärischer Luftmassen, die sich aus kinematischen FLEXTRA-Rückwärtstrajektorien ergeben. Für den Winter zeigt sich, dass sich diese zuletzt immer häufiger in sub-arktische Gebiete über dem Nordatlantik verlagert hatten, und seltener in der hohen Arktis lagen. Dies moduliert Warmluft-, und Feuchtetransporte in Richtung Spitzbergen, und beeinflusst potentiell Wolkencharakteristiken und assoziierte Strahlungsprozesse. Nähere Untersuchen zeigen dass ein zuletzt stärker ausgeprägtes Uralhoch und Islandtief dafür verantwortlich sind, und dass dies einen Beitrag von etwa 25% zur jüngsten Wintererwärmung auf Spitzbergen hat. Sommertrajektorien offenbaren eine gegensätzliche Entwicklung, mit häufigerer Anströmung aus der Zentralarktis, welche mit Kaltluftadvektion einhergeht, auf Kosten von seltenerer Anströmung aus dem Süden. Dies liegt in einem während der letzten 10 Jahre stark ausgeprägten Grönlandhoch begründet. Eine Fallstudie anhand von Radiosondendaten vom Frühsommer 2017 untermauert die Ergebnisse und zeigt darüber hinaus, dass derartige Zirkulationsänderungen mit ausgeprägten Anomalien von troposphärischen Temperaturen,Feuchtigkeit, und der Grenzschichthöhe in Ny-Ålesund einher geht. Interessanterweise tragen Zirkulationsänderungen im Winter also verstärkend zur Erwärmung auf Svalbard bei, während jene im Sommer einer stärkeren Erwärmung entgegenwirken. In einem letzten Analyseschritt wird die regionale Repräsentativität der Region für die weitere Arktis erörtert. Die Analyse von Era-Interim Reanalysedaten untermauert hierbei zunächst die advektiven Temperaturänderungen in Sommer und Winter in der Region um Svalbard. Der Trend zu verstärkt positiver winterlicher Temperaturadvektion ist einzigartig in der Arktis und beschränkt sich auf die Regionen zwischen Barentssee, Spitzbergen und der nördlichen Framstraße. Die sommerliche erhöhte Kaltluftadvektion findet sich in einem weiten Gebiet zwischen der Ostküste Grönlands und Franz-Josef-Land, welches Svalbard einschließt. Ein diabatischer Erwärmungstrend, der mit aufwärts gerichteten latenten Energieflüssen und Eisrückgang konsistent ist, findet sich in allen Jahreszeiten über der Barents/Karasee wieder, und erstreckt sich in einzelnen Monaten bis nach Svalbard. KW - arctic KW - climate KW - Svalbard KW - meteorology KW - climatology KW - atmosphere KW - Arktis KW - Klima KW - Svalbard KW - Meteorologie KW - Klimatologie KW - Atmosphäre Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445542 ER -