TY - JOUR A1 - Lotze-Campen, Hermann A1 - Verburg, Peter H. A1 - Popp, Alexander A1 - Lindner, Marcus A1 - Verkerk, Pieter J. A1 - Moiseyev, Alexander A1 - Schrammeijer, Elizabeth A1 - Helming, John A1 - Tabeau, Andrzej A1 - Schulp, Catharina J. E. A1 - van der Zanden, Emma H. A1 - Lavalle, Carlo A1 - Batista e Silva, Filipe A1 - Walz, Ariane A1 - Bodirsky, Benjamin Leon T1 - A cross-scale impact assessment of European nature protection policies under contrasting future socio-economic pathways JF - Regional environmental change N2 - Protection of natural or semi-natural ecosystems is an important part of societal strategies for maintaining biodiversity, ecosystem services, and achieving overall sustainable development. The assessment of multiple emerging land use trade-offs is complicated by the fact that land use changes occur and have consequences at local, regional, and even global scale. Outcomes also depend on the underlying socio-economic trends. We apply a coupled, multi-scale modelling system to assess an increase in nature protection areas as a key policy option in the European Union (EU). The main goal of the analysis is to understand the interactions between policy-induced land use changes across different scales and sectors under two contrasting future socio-economic pathways. We demonstrate how complementary insights into land system change can be gained by coupling land use models for agriculture, forestry, and urban areas for Europe, in connection with other world regions. The simulated policy case of nature protection shows how the allocation of a certain share of total available land to newly protected areas, with specific management restrictions imposed, may have a range of impacts on different land-based sectors until the year 2040. Agricultural land in Europe is slightly reduced, which is partly compensated for by higher management intensity. As a consequence of higher costs, total calorie supply per capita is reduced within the EU. While wood harvest is projected to decrease, carbon sequestration rates increase in European forests. At the same time, imports of industrial roundwood from other world regions are expected to increase. Some of the aggregate effects of nature protection have very different implications at the local to regional scale in different parts of Europe. Due to nature protection measures, agricultural production is shifted from more productive land in Europe to on average less productive land in other parts of the world. This increases, at the global level, the allocation of land resources for agriculture, leading to a decrease in tropical forest areas, reduced carbon stocks, and higher greenhouse gas emissions outside of Europe. The integrated modelling framework provides a method to assess the land use effects of a single policy option while accounting for the trade-offs between locations, and between regional, European, and global scales. KW - Land use change KW - Integrated modelling KW - Cross-scale interaction KW - Nature protection KW - Impact assessment Y1 - 2017 U6 - https://doi.org/10.1007/s10113-017-1167-8 SN - 1436-3798 SN - 1436-378X VL - 18 IS - 3 SP - 751 EP - 762 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Soergel, Bjoern A1 - Kriegler, Elmar A1 - Weindl, Isabelle A1 - Rauner, Sebastian A1 - Dirnaichner, Alois A1 - Ruhe, Constantin A1 - Hofmann, Matthias A1 - Bauer, Nico A1 - Bertram, Christoph A1 - Bodirsky, Benjamin Leon A1 - Leimbach, Marian A1 - Leininger, Julia A1 - Levesque, Antoine A1 - Luderer, Gunnar A1 - Pehl, Michaja A1 - Wingens, Christopher A1 - Baumstark, Lavinia A1 - Beier, Felicitas A1 - Dietrich, Jan Philipp A1 - Humpenöder, Florian A1 - von Jeetze, Patrick A1 - Klein, David A1 - Koch, Johannes A1 - Pietzcker, Robert C. A1 - Strefler, Jessica A1 - Lotze-Campen, Hermann A1 - Popp, Alexander T1 - A sustainable development pathway for climate action within the UN 2030 Agenda JF - Nature climate change N2 - Ambitious climate policies, as well as economic development, education, technological progress and less resource-intensive lifestyles, are crucial elements for progress towards the UN Sustainable Development Goals (SDGs). However, using an integrated modelling framework covering 56 indicators or proxies across all 17 SDGs, we show that they are insufficient to reach the targets. An additional sustainable development package, including international climate finance, progressive redistribution of carbon pricing revenues, sufficient and healthy nutrition and improved access to modern energy, enables a more comprehensive sustainable development pathway. We quantify climate and SDG outcomes, showing that these interventions substantially boost progress towards many aspects of the UN Agenda 2030 and simultaneously facilitate reaching ambitious climate targets. Nonetheless, several important gaps remain; for example, with respect to the eradication of extreme poverty (180 million people remaining in 2030). These gaps can be closed by 2050 for many SDGs while also respecting the 1.5 °C target and several other planetary boundaries. KW - climate-change mitigation KW - climate-change policy KW - socioeconomic scenarios KW - sustainability Y1 - 2021 U6 - https://doi.org/10.1038/s41558-021-01098-3 SN - 1758-678X SN - 1758-6798 VL - 11 IS - 8 SP - 656 EP - 664 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Herrero, Mario A1 - Thornton, Philip K. A1 - Mason-D'Croz, Daniel A1 - Palmer, Jeda A1 - Bodirsky, Benjamin Leon A1 - Pradhan, Prajal A1 - Barrett, Christopher B. A1 - Benton, Tim G. A1 - Hall, Andrew A1 - Pikaar, Ilje A1 - Bogard, Jessica R. A1 - Bonnett, Graham D. A1 - Bryan, Brett A. A1 - Campbell, Bruce M. A1 - Christensen, Svend A1 - Clark, Michael A1 - Fanzo, Jessica A1 - Godde, Cecile M. A1 - Jarvis, Andy A1 - Loboguerrero, Ana Maria A1 - Mathys, Alexander A1 - McIntyre, C. Lynne A1 - Naylor, Rosamond L. A1 - Nelson, Rebecca A1 - Obersteiner, Michael A1 - Parodi, Alejandro A1 - Popp, Alexander A1 - Ricketts, Katie A1 - Smith, Pete A1 - Valin, Hugo A1 - Vermeulen, Sonja J. A1 - Vervoort, Joost A1 - van Wijk, Mark A1 - van Zanten, Hannah H. E. A1 - West, Paul C. A1 - Wood, Stephen A. A1 - Rockström, Johan T1 - Articulating the effect of food systems innovation on the Sustainable Development Goals JF - The lancet Planetary health N2 - Food system innovations will be instrumental to achieving multiple Sustainable Development Goals (SDGs). However, major innovation breakthroughs can trigger profound and disruptive changes, leading to simultaneous and interlinked reconfigurations of multiple parts of the global food system. The emergence of new technologies or social solutions, therefore, have very different impact profiles, with favourable consequences for some SDGs and unintended adverse side-effects for others. Stand-alone innovations seldom achieve positive outcomes over multiple sustainability dimensions. Instead, they should be embedded as part of systemic changes that facilitate the implementation of the SDGs. Emerging trade-offs need to be intentionally addressed to achieve true sustainability, particularly those involving social aspects like inequality in its many forms, social justice, and strong institutions, which remain challenging. Trade-offs with undesirable consequences are manageable through the development of well planned transition pathways, careful monitoring of key indicators, and through the implementation of transparent science targets at the local level. Y1 - 2020 U6 - https://doi.org/10.1016/S2542-5196(20)30277-1 SN - 2542-5196 VL - 5 IS - 1 SP - E50 EP - E62 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Soergel, Bjoern A1 - Kriegler, Elmar A1 - Bodirsky, Benjamin Leon A1 - Bauer, Nico A1 - Leimbach, Marian A1 - Popp, Alexander T1 - Combining ambitious climate policies with efforts to eradicate poverty JF - Nature Communications N2 - Climate change threatens to undermine efforts to eradicate extreme poverty. However, climate policies could impose a financial burden on the global poor through increased energy and food prices. Here, we project poverty rates until 2050 and assess how they are influenced by mitigation policies consistent with the 1.5 degrees C target. A continuation of historical trends will leave 350 million people globally in extreme poverty by 2030. Without progressive redistribution, climate policies would push an additional 50 million people into poverty. However, redistributing the national carbon pricing revenues domestically as an equal-per-capita climate dividend compensates this policy side effect, even leading to a small net reduction of the global poverty headcount (-6 million). An additional international climate finance scheme enables a substantial poverty reduction globally and also in Sub-Saharan Africa. Combining national redistribution with international climate finance thus provides an important entry point to climate policy in developing countries. Ambitious climate policies can negatively impact the global poor by affecting income, food and energy prices. Here, the authors quantify this effect, and show that it can be compensated by national redistribution of the carbon pricing revenues in combination with international climate finance. Y1 - 2021 U6 - https://doi.org/10.1038/s41467-021-22315-9 SN - 2041-1723 VL - 12 PB - Nature Publishing Group CY - London ER -