TY - JOUR A1 - Schwanghart, Wolfgang A1 - Bernhardt, Anne A1 - Stolle, Amelie A1 - Hoelzmann, Philipp A1 - Adhikari, Basanta R. A1 - Andermann, Christoff A1 - Tofelde, Stefanie A1 - Merchel, Silke A1 - Rugel, Georg A1 - Fort, Monique A1 - Korup, Oliver T1 - Repeated catastrophic valley infill following medieval earthquakes in the Nepal Himalaya JF - Science N2 - Geomorphic footprints of past large Himalayan earthquakes are elusive, although they are urgently needed for gauging and predicting recovery times of seismically perturbed mountain landscapes. We present evidence of catastrophic valley infill following at least three medieval earthquakes in the Nepal Himalaya. Radiocarbon dates from peat beds, plant macrofossils, and humic silts in fine-grained tributary sediments near Pokhara, Nepal’s second-largest city, match the timing of nearby M > 8 earthquakes in ~1100, 1255, and 1344 C.E. The upstream dip of tributary valley fills and x-ray fluorescence spectrometry of their provenance rule out local sources. Instead, geomorphic and sedimentary evidence is consistent with catastrophic fluvial aggradation and debris flows that had plugged several tributaries with tens of meters of calcareous sediment from a Higher Himalayan source >60 kilometers away. Y1 - 2016 U6 - https://doi.org/10.1126/science.aac9865 SN - 0036-8075 SN - 1095-9203 VL - 351 SP - 147 EP - 150 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Schwanghart, Wolfgang A1 - Worni, Raphael A1 - Huggel, Christian A1 - Stoffel, Markus A1 - Korup, Oliver T1 - Uncertainty in the Himalayan energy-water nexus: estimating regional exposure to glacial lake outburst floods JF - Environmental research letters N2 - Himalayan water resources attract a rapidly growing number of hydroelectric power projects (HPP) to satisfy Asia's soaring energy demands. Yet HPP operating or planned in steep, glacier-fed mountain rivers face hazards of glacial lake outburst floods (GLOFs) that can damage hydropower infrastructure, alter water and sediment yields, and compromise livelihoods downstream. Detailed appraisals of such GLOF hazards are limited to case studies, however, and a more comprehensive, systematic analysis remains elusive. To this end we estimate the regional exposure of 257 Himalayan HPP to GLOFs, using a flood-wave propagation model fed by Monte Carlo-derived outburst volumes of >2300 glacial lakes. We interpret the spread of thus modeled peak discharges as a predictive uncertainty that arises mainly from outburst volumes and dam-breach rates that are difficult to assess before dams fail. With 66% of sampled HPP are on potential GLOF tracks, up to one third of these HPP could experience GLOF discharges well above local design floods, as hydropower development continues to seek higher sites closer to glacial lakes. We compute that this systematic push of HPP into headwaters effectively doubles the uncertainty about GLOF peak discharge in these locations. Peak discharges farther downstream, in contrast, are easier to predict because GLOF waves attenuate rapidly. Considering this systematic pattern of regional GLOF exposure might aid the site selection of future Himalayan HPP. Our method can augment, and help to regularly update, current hazard assessments, given that global warming is likely changing the number and size of Himalayan meltwater lakes. KW - hydropower KW - water resources KW - glacial hazards KW - glacial lake outburst floods KW - Himalayas Y1 - 2016 U6 - https://doi.org/10.1088/1748-9326/11/7/074005 SN - 1748-9326 VL - 11 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Munack, Henry A1 - Blöthe, Jan Henrik A1 - Fülöp, R. H. A1 - Codilean, Alexandru T. A1 - Fink, D. A1 - Korup, Oliver T1 - Recycling of Pleistocene valley fills dominates 135 ka of sediment flux, upper Indus River JF - Quaternary science reviews : the international multidisciplinary research and review journal KW - Transhimalaya KW - Zanskar KW - Indus KW - Valley fill KW - Drainage capture KW - In-situ cosmogenic Be-10 Y1 - 2016 U6 - https://doi.org/10.1016/j.quascirev.2016.07.030 SN - 0277-3791 VL - 149 SP - 122 EP - 134 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Panek, Tomas A1 - Korup, Oliver A1 - Minar, Jozef A1 - Hradecky, Jan T1 - Giant landslides and highstands of the Caspian Sea JF - Geology Y1 - 2016 U6 - https://doi.org/10.1130/G38259.1 SN - 0091-7613 SN - 1943-2682 VL - 44 SP - 939 EP - 942 PB - American Institute of Physics CY - Boulder ER - TY - GEN A1 - Schwanghart, Wolfgang A1 - Worni, Raphael A1 - Huggel, Christian A1 - Stoffel, Markus A1 - Korup, Oliver T1 - Uncertainty in the Himalayan energy–water nexus BT - estimating regional exposure to glacial lake outburst floods N2 - Himalayan water resources attract a rapidly growing number of hydroelectric power projects (HPP) to satisfy Asia's soaring energy demands. Yet HPP operating or planned in steep, glacier-fed mountain rivers face hazards of glacial lake outburst floods (GLOFs) that can damage hydropower infrastructure, alter water and sediment yields, and compromise livelihoods downstream. Detailed appraisals of such GLOF hazards are limited to case studies, however, and a more comprehensive, systematic analysis remains elusive. To this end we estimate the regional exposure of 257 Himalayan HPP to GLOFs, using a flood-wave propagation model fed by Monte Carlo-derived outburst volumes of >2300 glacial lakes. We interpret the spread of thus modeled peak discharges as a predictive uncertainty that arises mainly from outburst volumes and dam-breach rates that are difficult to assess before dams fail. With 66% of sampled HPP are on potential GLOF tracks, up to one third of these HPP could experience GLOF discharges well above local design floods, as hydropower development continues to seek higher sites closer to glacial lakes. We compute that this systematic push of HPP into headwaters effectively doubles the uncertainty about GLOF peak discharge in these locations. Peak discharges farther downstream, in contrast, are easier to predict because GLOF waves attenuate rapidly. Considering this systematic pattern of regional GLOF exposure might aid the site selection of future Himalayan HPP. Our method can augment, and help to regularly update, current hazard assessments, given that global warming is likely changing the number and size of Himalayan meltwater lakes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 266 KW - hydropower KW - water resources KW - glacial hazards KW - glacial lake outburst floods KW - Himalayas Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-97136 ER - TY - JOUR A1 - Schwanghart, Wolfgang A1 - Worni, Raphael A1 - Huggel, Christian A1 - Stoffel, Markus A1 - Korup, Oliver T1 - Uncertainty in the Himalayan energy–water nexus BT - estimating regional exposure to glacial lake outburst floods JF - Environmental research letters : ERL N2 - Himalayan water resources attract a rapidly growing number of hydroelectric power projects (HPP) to satisfy Asia's soaring energy demands. Yet HPP operating or planned in steep, glacier-fed mountain rivers face hazards of glacial lake outburst floods (GLOFs) that can damage hydropower infrastructure, alter water and sediment yields, and compromise livelihoods downstream. Detailed appraisals of such GLOF hazards are limited to case studies, however, and a more comprehensive, systematic analysis remains elusive. To this end we estimate the regional exposure of 257 Himalayan HPP to GLOFs, using a flood-wave propagation model fed by Monte Carlo-derived outburst volumes of >2300 glacial lakes. We interpret the spread of thus modeled peak discharges as a predictive uncertainty that arises mainly from outburst volumes and dam-breach rates that are difficult to assess before dams fail. With 66% of sampled HPP are on potential GLOF tracks, up to one third of these HPP could experience GLOF discharges well above local design floods, as hydropower development continues to seek higher sites closer to glacial lakes. We compute that this systematic push of HPP into headwaters effectively doubles the uncertainty about GLOF peak discharge in these locations. Peak discharges farther downstream, in contrast, are easier to predict because GLOF waves attenuate rapidly. Considering this systematic pattern of regional GLOF exposure might aid the site selection of future Himalayan HPP. Our method can augment, and help to regularly update, current hazard assessments, given that global warming is likely changing the number and size of Himalayan meltwater lakes. KW - Himalayas KW - glacial hazards KW - glacial lake outburst floods KW - hydropower KW - water resources Y1 - 2016 U6 - https://doi.org/10.1088/1748-9326/11/7/074005 SN - 1748-9326 VL - 11 PB - IOP Publ. CY - Bristol ER -