TY - GEN A1 - Wippert, Pia-Maria A1 - Puschmann, Anne-Katrin A1 - Schiltenwolf, Marcus A1 - Wiebking, Christine A1 - Mayer, Frank T1 - BACK PAIN: THE STUDY OF MECHANISMS AND THE TRANSLATION IN INTERVENTIONS WITHIN THE MISPEX NETWORK T2 - Psychosomatic medicine Y1 - 2016 SN - 0033-3174 SN - 1534-7796 VL - 78 SP - A91 EP - A91 PB - Elsevier CY - Philadelphia ER - TY - JOUR A1 - Silveira, Raul De Souza A1 - Carlsohn, Anja A1 - Langen, Georg A1 - Mayer, Frank A1 - Scharhag-Rosenberger, Friederike T1 - Reliability and day-to-day variability of peak fat oxidation during treadmill ergometry JF - Journal of the International Society of Sports Nutrition N2 - Background: Exercising at intensities where fat oxidation rates are high has been shown to induce metabolic benefits in recreational and health-oriented sportsmen. The exercise intensity (Fat(peak)) eliciting peak fat oxidation rates is therefore of particular interest when aiming to prescribe exercise for the purpose of fat oxidation and related metabolic effects. Although running and walking are feasible and popular among the target population, no reliable protocols are available to assess Fat(peak) as well as its actual velocity (VPFO) during treadmill ergometry. Our purpose was therefore, to assess the reliability and day-to-day variability of VPFO and Fat(peak) during treadmill ergometry running. Conclusion: In summary, relative and absolute reliability indicators for V-PFO and Fat(peak) were found to be excellent. The observed LoA may now serve as a basis for future training prescriptions, although fat oxidation rates at prolonged exercise bouts at this intensity still need to be investigated. KW - Peak fat oxidation KW - Reliability KW - Variability KW - Running KW - Treadmill ergometry Y1 - 2016 U6 - https://doi.org/10.1186/s12970-016-0115-1 SN - 1550-2783 VL - 13 PB - BioMed Central CY - London ER - TY - GEN A1 - Niederer, Daniel A1 - Vogt, Lutz A1 - Wippert, Pia-Maria A1 - Puschmann, Anne-Katrin A1 - Pfeifer, Ann-Christin A1 - Schiltenwolf, Marcus A1 - Banzer, Winfried A1 - Mayer, Frank T1 - Medicine in spine exercise (MiSpEx) for nonspecific low back pain patients BT - study protocol for a multicentre, single-blind randomized controlled trial T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background: Arising from the relevance of sensorimotor training in the therapy of nonspecific low back pain patients and from the value of individualized therapy, the present trial aims to test the feasibility and efficacy of individualized sensorimotor training interventions in patients suffering from nonspecific low back pain. Methods and study design: A multicentre, single-blind two-armed randomized controlled trial to evaluate the effects of a 12-week (3 weeks supervised centre-based and 9 weeks home-based) individualized sensorimotor exercise program is performed. The control group stays inactive during this period. Outcomes are pain, and pain-associated function as well as motor function in adults with nonspecific low back pain. Each participant is scheduled to five measurement dates: baseline (M1), following centre-based training (M2), following home-based training (M3) and at two follow-up time points 6 months (M4) and 12 months (M5) after M1. All investigations and the assessment of the primary and secondary outcomes are performed in a standardized order: questionnaires – clinical examination – biomechanics (motor function). Subsequent statistical procedures are executed after the examination of underlying assumptions for parametric or rather non-parametric testing. Discussion: The results and practical relevance of the study will be of clinical and practical relevance not only for researchers and policy makers but also for the general population suffering from nonspecific low back pain. Trial registration: Identification number DRKS00010129. German Clinical Trial registered on 3 March 2016. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 444 KW - sensorimotor training KW - motor control KW - exercise KW - low back painExercise KW - functional capacity KW - individualized intervention Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407308 IS - 444 ER - TY - JOUR A1 - Niederer, Daniel A1 - Vogt, Lutz A1 - Wippert, Pia-Maria A1 - Puschmann, Anne-Katrin A1 - Pfeifer, Ann-Christin A1 - Schiltenwolf, Marcus A1 - Banzer, Winfried A1 - Mayer, Frank T1 - Medicine in spine exercise (MiSpEx) for nonspecific low back pain patients: study protocol for a multicentre, single-blind randomized controlled trial JF - Trials N2 - Background: Arising from the relevance of sensorimotor training in the therapy of nonspecific low back pain patients and from the value of individualized therapy, the present trial aims to test the feasibility and efficacy of individualized sensorimotor training interventions in patients suffering from nonspecific low back pain. Methods and study design: A multicentre, single-blind two-armed randomized controlled trial to evaluate the effects of a 12-week (3 weeks supervised centre-based and 9 weeks home-based) individualized sensorimotor exercise program is performed. The control group stays inactive during this period. Outcomes are pain, and pain-associated function as well as motor function in adults with nonspecific low back pain. Each participant is scheduled to five measurement dates: baseline (M1), following centre-based training (M2), following home-based training (M3) and at two follow-up time points 6 months (M4) and 12 months (M5) after M1. All investigations and the assessment of the primary and secondary outcomes are performed in a standardized order: questionnaires - clinical examination biomechanics (motor function). Subsequent statistical procedures are executed after the examination of underlying assumptions for parametric or rather non-parametric testing. Discussion: The results and practical relevance of the study will be of clinical and practical relevance not only for researchers and policy makers but also for the general population suffering from nonspecific low back pain. KW - Sensorimotor training KW - Motor control KW - Low back pain KW - Exercise KW - Functional capacity KW - Individualized intervention Y1 - 2016 U6 - https://doi.org/10.1186/s13063-016-1645-1 SN - 1745-6215 VL - 17 PB - BioMed Central CY - London ER - TY - JOUR A1 - Müller, Steffen A1 - Müller, Juliane A1 - Stoll, Josefine A1 - Prieske, Olaf A1 - Cassel, Michael A1 - Mayer, Frank T1 - Incidence of back pain in adolescent athletes BT - a prospective study JF - BMC sports science, medicine & rehabilitation N2 - Background Recently, the incidence rate of back pain (BP) in adolescents has been reported at 21%. However, the development of BP in adolescent athletes is unclear. Hence, the purpose of this study was to examine the incidence of BP in young elite athletes in relation to gender and type of sport practiced. Methods Subjective BP was assessed in 321 elite adolescent athletes (m/f 57%/43%; 13.2 ± 1.4 years; 163.4 ± 11.4 cm; 52.6 ± 12.6 kg; 5.0 ± 2.6 training yrs; 7.6 ± 5.3 training h/week). Initially, all athletes were free of pain. The main outcome criterion was the incidence of back pain [%] analyzed in terms of pain development from the first measurement day (M1) to the second measurement day (M2) after 2.0 ± 1.0 year. Participants were classified into athletes who developed back pain (BPD) and athletes who did not develop back pain (nBPD). BP (acute or within the last 7 days) was assessed with a 5-step face scale (face 1–2 = no pain; face 3–5 = pain). BPD included all athletes who reported faces 1 and 2 at M1 and faces 3 to 5 at M2. nBPD were all athletes who reported face 1 or 2 at both M1 and M2. Data was analyzed descriptively. Additionally, a Chi2 test was used to analyze gender- and sport-specific differences (p = 0.05). Results Thirty-two athletes were categorized as BPD (10%). The gender difference was 5% (m/f: 12%/7%) but did not show statistical significance (p = 0.15). The incidence of BP ranged between 6 and 15% for the different sport categories. Game sports (15%) showed the highest, and explosive strength sports (6%) the lowest incidence. Anthropometrics or training characteristics did not significantly influence BPD (p = 0.14 gender to p = 0.90 sports; r2 = 0.0825). Conclusions BP incidence was lower in adolescent athletes compared to young non-athletes and even to the general adult population. Consequently, it can be concluded that high-performance sports do not lead to an additional increase in back pain incidence during early adolescence. Nevertheless, back pain prevention programs should be implemented into daily training routines for sport categories identified as showing high incidence rates. KW - Pain occurrence KW - Young athletes KW - Injury KW - Training volume Y1 - 2016 U6 - https://doi.org/10.1186/s13102-016-0064-7 SN - 2052-1847 VL - 8 PB - BioMed Central CY - London ER - TY - JOUR A1 - Müller, Steffen A1 - Carlsohn, Anja A1 - Müller, Juliane A1 - Baur, Heiner A1 - Mayer, Frank T1 - Influence of Obesity on Foot Loading Characteristics in Gait for Children Aged 1 to 12 Years JF - PLoS one N2 - Background Overweight and obesity are increasing health problems that are not restricted to adults only. Childhood obesity is associated with metabolic, psychological and musculoskeletal comorbidities. However, knowledge about the effect of obesity on the foot function across maturation is lacking. Decreased foot function with disproportional loading characteristics is expected for obese children. The aim of this study was to examine foot loading characteristics during gait of normal-weight, overweight and obese children aged 1-12 years. Methods A total of 10382 children aged one to twelve years were enrolled in the study. Finally, 7575 children (m/f: n = 3630/3945; 7.0 +/- 2.9yr; 1.23 +/- 0.19m; 26.6 +/- 10.6kg; BMI: 17.1 +/- 2.4kg/m(2)) were included for (complete case) data analysis. Children were categorized to normalweight (>= 3rd and <90th percentile; n = 6458), overweight (>= 90rd and <97th percentile; n = 746) or obese (>97th percentile; n = 371) according to the German reference system that is based on age and gender-specific body mass indices (BMI). Plantar pressure measurements were assessed during gait on an instrumented walkway. Contact area, arch index (AI), peak pressure (PP) and force time integral (FTI) were calculated for the total, fore-, mid-and hindfoot. Data was analyzed descriptively (mean +/- SD) followed by ANOVA/Welch-test (according to homogeneity of variances: yes/no) for group differences according to BMI categorization (normal-weight, overweight, obesity) and for each age group 1 to 12yrs (post-hoc Tukey Kramer/Dunnett's C; alpha = 0.05). Results Mean walking velocity was 0.95 +/- 0.25 m/s with no differences between normal-weight, overweight or obese children (p = 0.0841). Results show higher foot contact area, arch index, peak pressure and force time integral in overweight and obese children (p< 0.001). Obese children showed the 1.48-fold (1 year-old) to 3.49-fold (10 year-old) midfoot loading (FTI) compared to normal-weight. Conclusion Additional body mass leads to higher overall load, with disproportional impact on the midfoot area and longitudinal foot arch showing characteristic foot loading patterns. Already the feet of one and two year old children are significantly affected. Childhood overweight and obesity is not compensated by the musculoskeletal system. To avoid excessive foot loading with potential risk of discomfort or pain in childhood, prevention strategies should be developed and validated for children with a high body mass index and functional changes in the midfoot area. The presented plantar pressure values could additionally serve as reference data to identify suspicious foot loading patterns in children. KW - plantar pressure distribution KW - body-mass index KW - prepubescent children KW - overweight children KW - childhood obesity KW - walking KW - speed KW - forces KW - adolescents KW - prevalence Y1 - 2016 U6 - https://doi.org/10.1371/journal.pone.0149924 SN - 1932-6203 VL - 11 IS - 2 PB - Public Library of Science CY - Lawrence, Kan. ER - TY - GEN A1 - Müller, Steffen A1 - Carlsohn, Anja A1 - Müller, Juliane A1 - Baur, Heiner A1 - Mayer, Frank T1 - Influence of Obesity on Foot Loading Characteristics in Gait for Children Aged 1 to 12 Years N2 - Background Overweight and obesity are increasing health problems that are not restricted to adults only. Childhood obesity is associated with metabolic, psychological and musculoskeletal comorbidities. However, knowledge about the effect of obesity on the foot function across maturation is lacking. Decreased foot function with disproportional loading characteristics is expected for obese children. The aim of this study was to examine foot loading characteristics during gait of normal-weight, overweight and obese children aged 1-12 years. Methods A total of 10382 children aged one to twelve years were enrolled in the study. Finally, 7575 children (m/f: n = 3630/3945; 7.0 +/- 2.9yr; 1.23 +/- 0.19m; 26.6 +/- 10.6kg; BMI: 17.1 +/- 2.4kg/m(2)) were included for (complete case) data analysis. Children were categorized to normalweight (>= 3rd and <90th percentile; n = 6458), overweight (>= 90rd and <97th percentile; n = 746) or obese (>97th percentile; n = 371) according to the German reference system that is based on age and gender-specific body mass indices (BMI). Plantar pressure measurements were assessed during gait on an instrumented walkway. Contact area, arch index (AI), peak pressure (PP) and force time integral (FTI) were calculated for the total, fore-, mid-and hindfoot. Data was analyzed descriptively (mean +/- SD) followed by ANOVA/Welch-test (according to homogeneity of variances: yes/no) for group differences according to BMI categorization (normal-weight, overweight, obesity) and for each age group 1 to 12yrs (post-hoc Tukey Kramer/Dunnett's C; alpha = 0.05). Results Mean walking velocity was 0.95 +/- 0.25 m/s with no differences between normal-weight, overweight or obese children (p = 0.0841). Results show higher foot contact area, arch index, peak pressure and force time integral in overweight and obese children (p< 0.001). Obese children showed the 1.48-fold (1 year-old) to 3.49-fold (10 year-old) midfoot loading (FTI) compared to normal-weight. Conclusion Additional body mass leads to higher overall load, with disproportional impact on the midfoot area and longitudinal foot arch showing characteristic foot loading patterns. Already the feet of one and two year old children are significantly affected. Childhood overweight and obesity is not compensated by the musculoskeletal system. To avoid excessive foot loading with potential risk of discomfort or pain in childhood, prevention strategies should be developed and validated for children with a high body mass index and functional changes in the midfoot area. The presented plantar pressure values could additionally serve as reference data to identify suspicious foot loading patterns in children. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 284 KW - plantar pressure distribution KW - body-mass index KW - prepubescent children KW - overweight children KW - childhood obesity KW - walking KW - speed KW - forces KW - adolescents KW - prevalence Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-90108 ER - TY - JOUR A1 - Müller, Juliane A1 - Müller, Steffen A1 - Stoll, Josefine A1 - Rector, Michael V. A1 - Baur, Heiner A1 - Mayer, Frank T1 - Influence of Load on Three-Dimensional Segmental Trunk Kinematics in One-Handed Lifting: A Pilot Study JF - Journal of applied biomechanics N2 - Stability of the trunk is relevant in determining trunk response to different loading in everyday tasks initiated by the limbs. Descriptions of the trunk’s mechanical movement patterns in response to different loads while lifting objects are still under debate. Hence, the aim of this study was to analyze the influence of weight on 3-dimensional segmental motion of the trunk during 1-handed lifting. Ten asymptomatic subjects were included (29 ± 3 y; 1.79 ± 0.09 m; 75 ± 14 kg). Subjects lifted 3× a light and heavy load from the ground up onto a table. Three-dimensional segmental trunk motion was measured (12 markers; 3 segments: upper thoracic area [UTA], lower thoracic area [LTA], lumbar area [LA]). Outcomes were total motion amplitudes (ROM;[°]) for anterior flexion, lateral flexion, and rotation of each segment. The highest ROM was observed in the LTA segment (anterior flexion), and the smallest ROM in the UTA segment (lateral flexion). ROM differed for all planes between the 3 segments for both tasks (P < .001). There were no differences in ROM between light and heavy loads (P > .05). No interaction effects (load × segment) were observed, as ROM did not reveal differences between loading tasks. Regardless of weight, the 3 segments did reflect differences, supporting the relevance of multisegmental analysis. KW - trunk motion KW - kinematic trunk model KW - everyday task KW - MiSpEx* Y1 - 2016 U6 - https://doi.org/10.1123/jab.2015-0227 SN - 1065-8483 SN - 1543-2688 VL - 32 SP - 520 EP - 525 PB - Human Kinetics Publ. CY - Champaign ER - TY - JOUR A1 - Müller, Juliane A1 - Müller, Steffen A1 - Engel, Tilman A1 - Reschke, Antje A1 - Baur, Heiner A1 - Mayer, Frank T1 - Stumbling reactions during perturbed walking: Neuromuscular reflex activity and 3-D kinematics of the trunk - A pilot study JF - Journal of biomechanics N2 - Stumbling led to an increase in ROM, compared to unperturbed gait, in all segments and planes. These increases ranged between 107 +/- 26% (UTA/rotation) and 262 +/- 132% (UTS/lateral flexion), significant only in lateral flexion. EMG activity of the trunk was increased during stumbling (abdominal: 665 +/- 283%; back: 501 +/- 215%), without significant differences between muscles. Provoked stumbling leads to a measurable effect on the trunk, quantifiable by an increase in ROM and EMG activity, compared to normal walking. Greater abdominal muscle activity and ROM of lateral flexion may indicate a specific compensation pattern occurring during stumbling. (C) 2015 Elsevier Ltd. All rights reserved. KW - Trunk kinematics KW - Treadmill walking KW - Gait perturbation KW - EMG Y1 - 2016 U6 - https://doi.org/10.1016/j.jbiomech.2015.09.041 SN - 0021-9290 SN - 1873-2380 VL - 49 SP - 933 EP - 938 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Mueller, Steffen A1 - Carlsohn, Anja A1 - Mueller, Juliane A1 - Baur, Heiner A1 - Mayer, Frank T1 - Influence of Obesity on Foot Loading Characteristics in Gait for Children Aged 1 to 12 Years JF - PLoS one N2 - Background Overweight and obesity are increasing health problems that are not restricted to adults only. Childhood obesity is associated with metabolic, psychological and musculoskeletal comorbidities. However, knowledge about the effect of obesity on the foot function across maturation is lacking. Decreased foot function with disproportional loading characteristics is expected for obese children. The aim of this study was to examine foot loading characteristics during gait of normal-weight, overweight and obese children aged 1-12 years. Methods Results Mean walking velocity was 0.95 +/- 0.25 m/s with no differences between normal-weight, overweight or obese children (p = 0.0841). Results show higher foot contact area, arch index, peak pressure and force time integral in overweight and obese children (p< 0.001). Obese children showed the 1.48-fold (1 year-old) to 3.49-fold (10 year-old) midfoot loading (FTI) compared to normal-weight. Conclusion Additional body mass leads to higher overall load, with disproportional impact on the midfoot area and longitudinal foot arch showing characteristic foot loading patterns. Already the feet of one and two year old children are significantly affected. Childhood overweight and obesity is not compensated by the musculoskeletal system. To avoid excessive foot loading with potential risk of discomfort or pain in childhood, prevention strategies should be developed and validated for children with a high body mass index and functional changes in the midfoot area. The presented plantar pressure values could additionally serve as reference data to identify suspicious foot loading patterns in children. Y1 - 2016 U6 - https://doi.org/10.1371/journal.pone.0149924 SN - 1932-6203 VL - 11 SP - 1710 EP - 1717 PB - PLoS CY - San Fransisco ER -