TY - JOUR A1 - Haendel, Annabel A1 - Ohrnberger, Matthias A1 - Krüger, Frank T1 - Frequency-dependent quality factors from the deconvolution of ambient noise recordings in a borehole in West Bohemia/Vogtland JF - Geophysical journal international N2 - The correct estimation of site-specific attenuation is crucial for the assessment of seismic hazard. Downhole instruments provide in this context valuable information to constrain attenuation directly from data. In this study, we apply an interferometric approach to this problem by deconvolving seismic motions recorded at depth with those recorded at the surface. In doing so, incident and surface-reflected waves can be separated. We apply this technique not only to earthquake data but also to recordings of ambient vibrations. We compute the transfer function between incident and surface-reflected waves in order to infer frequency-dependent quality factors for S waves. The method is applied to a 87m deep borehole sensor and a colocated surface instrument situated at a hard-rock site in West Bohemia/Vogtland, Germany. We show that the described method provides comparable attenuation estimates using either earthquake data or ambient noise for frequencies between 5 and 15 Hz. Moreover, a single hour of noise recordings seems to be sufficient to yield stable deconvolution traces and quality factors, thus, offering a fast and easy way to derive attenuation estimates from borehole recordings even in low- to mid-seismicity regions. KW - Downholemethods KW - Seismic attenuation KW - Seismic interferometry KW - Seismic noise Y1 - 2018 U6 - https://doi.org/10.1093/gji/ggy422 SN - 0956-540X SN - 1365-246X VL - 216 IS - 1 SP - 251 EP - 260 PB - Oxford Univ. Press CY - Oxford ER -