TY - THES A1 - Stark, Markus T1 - Implications of local and regional processes on the stability of metacommunities in diverse ecosystems T1 - Auswirkungen lokaler und regionaler Prozesse auf die Stabilität von Metagemeinschaften in diversen Ökosystemen N2 - Anthropogenic activities such as continuous landscape changes threaten biodiversity at both local and regional scales. Metacommunity models attempt to combine these two scales and continuously contribute to a better mechanistic understanding of how spatial processes and constraints, such as fragmentation, affect biodiversity. There is a strong consensus that such structural changes of the landscape tend to negatively effect the stability of metacommunities. However, in particular the interplay of complex trophic communities and landscape structure is not yet fully understood. In this present dissertation, a metacommunity approach is used based on a dynamic and spatially explicit model that integrates population dynamics at the local scale and dispersal dynamics at the regional scale. This approach allows the assessment of complex spatial landscape components such as habitat clustering on complex species communities, as well as the analysis of population dynamics of a single species. In addition to the impact of a fixed landscape structure, periodic environmental disturbances are also considered, where a periodical change of habitat availability, temporally alters landscape structure, such as the seasonal drying of a water body. On the local scale, the model results suggest that large-bodied animal species, such as predator species at high trophic positions, are more prone to extinction in a state of large patch isolation than smaller species at lower trophic levels. Increased metabolic losses for species with a lower body mass lead to increased energy limitation for species on higher trophic levels and serves as an explanation for a predominant loss of these species. This effect is particularly pronounced for food webs, where species are more sensitive to increased metabolic losses through dispersal and a change in landscape structure. In addition to the impact of species composition in a food web for diversity, the strength of local foraging interactions likewise affect the synchronization of population dynamics. A reduced predation pressure leads to more asynchronous population dynamics, beneficial for the stability of population dynamics as it reduces the risk of correlated extinction events among habitats. On the regional scale, two landscape aspects, which are the mean patch isolation and the formation of local clusters of two patches, promote an increase in $\beta$-diversity. Yet, the individual composition and robustness of the local species community equally explain a large proportion of the observed diversity patterns. A combination of periodic environmental disturbance and patch isolation has a particular impact on population dynamics of a species. While the periodic disturbance has a synchronizing effect, it can even superimpose emerging asynchronous dynamics in a state of large patch isolation and unifies trends in synchronization between different species communities. In summary, the findings underline a large local impact of species composition and interactions on local diversity patterns of a metacommunity. In comparison, landscape structures such as fragmentation have a negligible effect on local diversity patterns, but increase their impact for regional diversity patterns. In contrast, at the level of population dynamics, regional characteristics such as periodic environmental disturbance and patch isolation have a particularly strong impact and contribute substantially to the understanding of the stability of population dynamics in a metacommunity. These studies demonstrate once again the complexity of our ecosystems and the need for further analysis for a better understanding of our surrounding environment and more targeted conservation of biodiversity. N2 - Seit geraumer Zeit prägt der Mensch seine Umwelt und greift in die Struktur von Landschaften ein. In den letzten Jahrzehnten wurde die Landschaftsnutzung intensiviert und Ökosyteme weltweit anthropogen überprägt. Solche Veränderungen der Landschaft sind mit Verantwortlich für den derzeit rapiden Verlust an Biodiversität auf lokaler wie regionaler Ebene. Metagemeinschafts-Modelle versuchen diese beiden Ebenen zu kombinieren und kontinuierlich zu einem besseren mechanistischen Verständnis beizutragen, wie räumliche Prozesse, so z. B. Fragmentierung von Biotopen, die Biodiversität beeinflussen. Es besteht dabei ein großer Konsens, dass sich solche Änderungen der Landschaft tendenziell negativ auf die Stabilität von Metagemeinschaften auswirken. Jedoch ist insbesondere das Zusammenspiel von komplexen trophischen Gemeinschaften und räumlichen Prozessen längst nicht vollständig verstanden. In der vorliegenden Arbeit wird ein Metagemeinschafts-Modellansatz verwendet, der auf einem dynamischen und räumlich expliziten Modell basiert, das Populationsdynamiken auf der lokalen Ebene und Migrationsdynamiken auf der regionalen Ebene integriert. Dieser Ansatz erlaubt die Bewertung komplexer räumlicher Landschaftskomponenten wie z. B. die Auswirkung von Habitatsclustern auf Populationsdynamiken einzelner Arten bis hin zur Diversität komplexer Artengemeinschaften. Zusätzlich zum Einfluss von einzelner konstanter räumlicher Strukturen werden auch periodische Umweltstörungen berücksichtigt, bei der ein Wechsel der Habitatverfügbarkeit, die räumliche Struktur der Landschaft temporär verändert, wie z. B. die Austrocknung eines Gewässers. Auf der lokalen Ebene deuten die Modellergebnisse darauf hin, dass Tierarten mit einer großen Körpermasse, wie z. B. Raubtierarten in höheren trophischen Positionen, in einem Zustand großer Habitat-Isolation stärker vom Aussterben bedroht sind, als Arten mit geringer Körpermasse auf unteren trophischen Ebenen. Arten mit einer geringerer Körpermasse haben einen erhöhten metabolischen Verlust, der zu einer Energielimitierung auf den höheren trophischen Ebenen führt. Dies kann eine Erklärung dafür sein, dass Arten mit großer Körpermasse ein höheres Aussterberisiko in den Modellergebnissen aufweisen. Dieser Effekt ist vor allem in Nahrungsnetzen ausgeprägt, bei denen Arten empfindlicher auf metabolische Verluste durch Migration und eine Veränderung der Habitat Struktur reagieren. Neben der Bedeutung der Zusammensetzung der Arten eines Nahrungsnetzes für die Diversität, haben lokale Fraßinteraktionen ebenfalls Auswirkungen auf die Synchronisierung von Populationsdynamiken. Ein geringerer Fraßdruck führt zu mehr asynchronen Populationsdynamiken, die diese Dynamiken einer Metapopulation stabilisiert, sodass das Risiko von Aussterbeereignissen einzelner Arten sinkt. Auf der regionalen Ebene führen als landschaftliche Aspekte, neben der mittleren Habitat-Isolation, ebenso die Bildung von lokalen Clustern aus zwei Habitaten zu einer Zunahme der Beta-Diversität. Jedoch erklären die individuelle Zusammensetzung und Robustheit der lokalen Arten- gemeinschaft gleichermaßen einen großen Anteil der zu beobachteten Diversitätsmuster. Eine Kombination aus periodischen Umweltstörungen und Habitat-Isolation hat insbesondere einen Einfluss auf die Populationsdynamiken einzelner Arten. Populationsdynamiken können durch periodische Umweltstörungen synchronisiert werden, und dabei die sonst auftauchende asynchronen Populationsdynamiken bei einer größeren Habitat-Isolation überlagern. Die dadurch vereinheitlichen Trends in der Synchronisierung erhöhen das Risiko korrelierter Aussterbeereignisse einer Art. Zusammenfassend lassen sich zwei große Einflussfaktoren auf die lokalen Diversitätsmuster der Metagemeinschaften feststellen. Zum Einen die lokale Artenzusammensetzung und zum Anderen die Interaktionen der Arten. Im Vergleich dazu, haben räumliche Komponenten wie die Fragmentierung der Landschaft einen vernachlässigbaren Einfluss auf die lokalen Diversitätsmuster und gewinnen erst für regionale Diversitätsmuster an Gewicht. Im Gegensatz dazu spielen auf der Ebene der Populationsdynamik besonders regionale Eigenschaften, wie die periodische Umweltstörung und Habitat-Isolation, eine Rolle und tragen wesentlich zum Verständnis der Stabilität von Populationsdynamiken der Metagemeinschaft bei. Diese Untersuchungen zeigen einmal mehr die Komplexität unserer Ökosysteme und die Notwendigkeit weiterer Analysen für ein besseres Verständnis unserer umgebenen Umwelt und gezielteren Schutz der Biodiversität. KW - Fragmentation KW - Ecology KW - Food Web KW - Metacommunity KW - Disturbance KW - Störungen KW - Ökologie KW - Nahrungsnetze KW - Fragmentierung KW - Metagemeinschaften Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-526399 ER - TY - THES A1 - May, Felix T1 - Spatial models of plant diversity and plant functional traits : towards a better understanding of plant community dynamics in fragmented landscapes T1 - Räumliche Modelle der Diversität und der funktionellen Eigenschaften von Pflanzen : für ein besseres Verständnis der Dynamik von Pflanzengemeinschaften in fragmentierten Landschaften N2 - The fragmentation of natural habitat caused by anthropogenic land use changes is one of the main drivers of the current rapid loss of biodiversity. In face of this threat, ecological research needs to provide predictions of communities' responses to fragmentation as a prerequisite for the effective mitigation of further biodiversity loss. However, predictions of communities' responses to fragmentation require a thorough understanding of ecological processes, such as species dispersal and persistence. Therefore, this thesis seeks an improved understanding of community dynamics in fragmented landscapes. In order to approach this overall aim, I identified key questions on the response of plant diversity and plant functional traits to variations in species' dispersal capability, habitat fragmentation and local environmental conditions. All questions were addressed using spatially explicit simulations or statistical models. In chapter 2, I addressed scale-dependent relationships between dispersal capability and species diversity using a grid-based neutral model. I found that the ratio of survey area to landscape size is an important determinant of scale-dependent dispersal-diversity relationships. With small ratios, the model predicted increasing dispersal-diversity relationships, while decreasing dispersal-diversity relationships emerged, when the ratio approached one, i.e. when the survey area approached the landscape size. For intermediate ratios, I found a U-shaped pattern that has not been reported before. With this study, I unified and extended previous work on dispersal-diversity relationships. In chapter 3, I assessed the type of regional plant community dynamics for the study area in the Southern Judean Lowlands (SJL). For this purpose, I parameterised a multi-species incidence-function model (IFM) with vegetation data using approximate Bayesian computation (ABC). I found that the type of regional plant community dynamics in the SJL is best characterized as a set of isolated “island communities” with very low connectivity between local communities. Model predictions indicated a significant extinction debt with 33% - 60% of all species going extinct within 1000 years. In general, this study introduces a novel approach for combining a spatially explicit simulation model with field data from species-rich communities. In chapter 4, I first analysed, if plant functional traits in the SJL indicate trait convergence by habitat filtering and trait divergence by interspecific competition, as predicted by community assembly theory. Second, I assessed the interactive effects of fragmentation and the south-north precipitation gradient in the SJL on community-mean plant traits. I found clear evidence for trait convergence, but the evidence for trait divergence fundamentally depended on the chosen null-model. All community-mean traits were significantly associated with the precipitation gradient in the SJL. The trait associations with fragmentation indices (patch size and connectivity) were generally weaker, but statistically significant for all traits. Specific leaf area (SLA) and plant height were consistently associated with fragmentation indices along the precipitation gradient. In contrast, seed mass and seed number were interactively influenced by fragmentation and precipitation. In general, this study provides the first analysis of the interactive effects of climate and fragmentation on plant functional traits. Overall, I conclude that the spatially explicit perspective adopted in this thesis is crucial for a thorough understanding of plant community dynamics in fragmented landscapes. The finding of contrasting responses of local diversity to variations in dispersal capability stresses the importance of considering the diversity and composition of the metacommunity, prior to implementing conservation measures that aim at increased habitat connectivity. The model predictions derived with the IFM highlight the importance of additional natural habitat for the mitigation of future species extinctions. In general, the approach of combining a spatially explicit IFM with extensive species occupancy data provides a novel and promising tool to assess the consequences of different management scenarios. The analysis of plant functional traits in the SJL points to important knowledge gaps in community assembly theory with respect to the simultaneous consequences of habitat filtering and competition. In particular, it demonstrates the importance of investigating the synergistic consequences of fragmentation, climate change and land use change on plant communities. I suggest that the integration of plant functional traits and of species interactions into spatially explicit, dynamic simulation models offers a promising approach, which will further improve our understanding of plant communities and our ability to predict their dynamics in fragmented and changing landscapes. N2 - Die Fragmentierung von Landschaften umfasst die Zerschneidung und den Verlust von Flächen mit natürlicher Vegetationsentwicklung und ist eine der Hauptursachen für den gegenwärtigen drastischen Verlust an Biodiversität. Diese Dissertation soll zu einem besseren Verständnis der Vegetationsdynamik in fragmentierten Landschaften beitragen. Damit verbunden ist das Ziel, Vorhersagen über die Reaktion von Pflanzengemeinschaften auf Fragmentierung zu verbessern. Diese Vorhersagen sind notwendig, um gezielte Naturschutzmaßnahmen zur Verminderung eines weiteren Verlustes an Biodiversität umsetzen zu können. In Kapitel 2 der Dissertation wird mit einem Simulationsmodell untersucht, wie sich die Ausbreitungsdistanz von Samen auf die lokale Artenzahl von Pflanzengemeinschaften auswirkt. Dabei zeigte sich, dass längere Ausbreitungsdistanzen die lokale Artenvielfalt sowohl erhöhen, als auch verringern können. Der wichtigste Einflussfaktor war dabei die Artenvielfalt der über-geordneten Pflanzengemeinschaft, in der die betrachtete lokale Gemeinschaft eingebettet war. Im dritten Kapitel wird die Konnektivität zwischen Pflanzengemeinschaften in Habitat-fragmenten, d.h. der Austausch von Arten und Individuen durch Samenausbreitung, im Unter-suchungsgebiet in Israel analysiert. Dafür wurde ein zweites räumliches Simulationsmodell mit statistischen Verfahren an Felddaten angepasst. Der Vergleich des Modells mit den Daten wies auf eine sehr geringe Konnektivität zwischen den Habitatfragmenten hin. Das Modell sagte vorher, dass innerhalb von 1000 Jahren 33% - 60% der Arten aussterben könnten. In Kapitel 4 wird zuerst analysiert, welche Prozesse die Verteilung von funktionellen Eigenschaften in Pflanzengemeinschaften bestimmen. In einem zweiten Schritt wird dann unter-sucht, wie sich funktionelle Eigenschaften von Pflanzengemeinschaften mit dem Niederschlag und der Fragmentierung im Untersuchungsgebiet in Israel verändern. Der Zusammenhang zwischen den Eigenschaften Pflanzenhöhe, sowie spezifischer Blattfläche und der Fragmentierung änderte sich nicht entlang des Niederschlagsgradienten. Im Gegensatz dazu, änderte sich der Zusammenhang zwischen der Samenmasse bzw. der Samenzahl und der Fragmentierung mit dem Niederschlag. Aus den Ergebnissen der ersten Teilstudie wird deutlich, dass Naturschutzmaßnahmen, die natürliche Habitate stärker vernetzen sollen, die Diversität, sowie die Zusammensetzung der übergeordneten Artengemeinschaft berücksichtigen müssen, um Verluste an Biodiversität zu vermeiden. Die Verknüpfung eines räumlichen Simulationsmodells mit Felddaten in der zweiten Teilstudie stellt einen neuen und vielversprechenden Ansatz für die Untersuchung der Auswirkungen verschiedener Management-Szenarien dar. Die dritte Teilstudie ist die erste Analyse der gemeinsamen Auswirkungen von Klima und Fragmentierung auf funktionelle Pflanzen-eigenschaften und zeigt die hohe Bedeutung der Untersuchung von Synergie-Effekten verschiedener Umweltfaktoren. Für zukünftige Forschung legt diese Dissertation nahe, funktionelle Eigenschaften und Konkurrenz zwischen Arten in räumlichen Simulationsmodellen zu berücksichtigen, um das Verständnis von Artengemeinschaften in fragmentierten Landschaften noch weiter zu verbessern. KW - Diversität KW - Ausbreitung KW - Pflanzengemeinschaften KW - Fragmentierung KW - ökologische Modellierung KW - diversity KW - dispersal KW - plant communities KW - fragmentation KW - ecological modelling Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-68444 ER -