TY - JOUR A1 - Laux, Eva-Maria A1 - Bier, Frank Fabian A1 - Hölzel, Ralph T1 - Dielectrophoretic Stretching of DNA JF - DNA Nanotechnology N2 - The spatial control of DNA and of self-assembled DNA constructs is a prerequisite for the preparation of DNA-based nanostructures and microstructures and a useful tool for studies on single DNA molecules. Here we describe a protocol for the accumulation of dissolved lambda-DNA molecules between planar microelectrodes by the action of inhomogeneous radiofrequency electric fields. The resulting AC electrokinetic forces stretch the DNA molecules and align them parallel to the electric field. The electrode preparation from off-the-shelf electronic components is explained, and a detailed description of the electronic setup is given. The experimental procedure is controlled in real-time by fluorescence microscopy. KW - Alignment KW - Dielectrophoresis KW - DNA KW - Electrokinetics KW - Interdigitated electrodes KW - Stretching Y1 - 2018 SN - 978-1-4939-8582-1 SN - 978-1-4939-8581-4 U6 - https://doi.org/10.1007/978-1-4939-8582-1_14 SN - 1064-3745 SN - 1940-6029 SP - 199 EP - 208 PB - Humana Press Inc. CY - New York ET - 2 ER - TY - JOUR A1 - Laux, Eva-Maria A1 - Bier, Frank Fabian A1 - Hölzel, Ralph T1 - Electrode-based AC electrokinetics of proteins BT - a mini-review JF - Bioelectrochemistry : official journal of the Bioelectrochemical Society ; an international journal devoted to electrochemical aspects of biology and biological aspects of electrochemistry N2 - Employing electric phenomena for the spatial manipulation of bioparticles from whole cells down to dissolved molecules has become a useful tool in biotechnology and analytics. AC electrokinetic effects like dielectrophoresis and AC electroosmosis are increasingly used to concentrate, separate and immobilize DNA and proteins. With the advance of photolithographical micro- and nanofabrication methods, novel or improved bioanalytical applications benefit from concentrating analytes, signal enhancement and locally controlled immobilization by AC electrokinetic effects. In this review of AC electrokinetics of proteins, the respective studies are classified according to their different electrode geometries: individual electrode pairs, interdigitated electrodes, quadrupole electrodes, and 3D configurations of electrode arrays. Known advantages and disadvantages of each layout are discussed. KW - AC electrokinetics KW - Dielectrophoresis KW - Electrodes KW - Electroosmosis KW - Proteins Y1 - 2017 U6 - https://doi.org/10.1016/j.bioelechem.2017.11.010 SN - 1567-5394 SN - 1878-562X VL - 120 SP - 76 EP - 82 PB - Elsevier B.V. CY - Amsterdam ER -