TY - JOUR A1 - Delahaye, Emilie A1 - Xie, Zailai A1 - Schäfer, Andreas A1 - Douce, Laurent A1 - Rogez, Guillaume A1 - Rabu, Pierre A1 - Günter, Christina A1 - Gutmann, Jochen S. A1 - Taubert, Andreas T1 - Intercalation synthesis of functional hybrid materials based on layered simple hydroxide hosts and ionic liquid guests - a pathway towards multifunctional ionogels without a silica matrix? JF - Dalton transactions : a journal of inorganic chemistry, including bioinorganic, organometallic, and solid-state chemistry N2 - Functional hybrid materials on the basis of inorganic hosts and ionic liquids (ILs) as guests hold promise for a virtually unlimited number of applications. In particular, the interaction and the combination of properties of a defined inorganic matrix and a specific IL could lead to synergistic effects in property selection and tuning. Such hybrid materials, generally termed ionogels, are thus an emerging topic in hybrid materials research. The current article addresses some of the recent developments and focuses on the question why silica is currently the dominating matrix used for (inorganic) ionogel fabrication. In comparison to silica, matrix materials such as layered simple hydroxides, layered double hydroxides, clay-type substances, magnetic or catalytically active solids, and many other compounds could be much more interesting because they themselves may carry useful functionalities, which could also be exploited for multifunctional hybrid materials synthesis. The current article combines experimental results with some arguments as to how new, advanced functional hybrid materials can be generated and which obstacles will need to be overcome to successfully achieve the synthesis of a desired target material. Y1 - 2011 U6 - https://doi.org/10.1039/c1dt10841g SN - 1477-9226 VL - 40 IS - 39 SP - 9977 EP - 9988 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Delahaye, Emilie A1 - Goebel, Ronald A1 - Loebbicke, Ruben A1 - Guillot, Regis A1 - Sieber, Christoph A1 - Taubert, Andreas T1 - Silica ionogels for proton transport JF - Journal of materials chemistry N2 - A number of ionogels - silica-ionic liquid (IL) hybrid materials - were synthesized and studied for their ionic conductivity. The materials are based on a sulfonated IL, 1-methyl-3-(3-sulfopropyl-)-imidazolium p-toluenesulfonate, [PmimSO(3)H][PTS], which contains a sulfonic acid/sulfonate group both in the IL anion and in the side chain of the IL cation. By way of the sulfonate-sulfonic acid proton transfer, the IL imparts the ionogel with a high ionic conductivity of ca. 10(-2) S cm(-1) in the as-synthesized state at 120 degrees C and 10(-3) S cm(-1) in the dry state at 120 degrees C. The ionogels are stable up to ca. 150 degrees C in dynamic thermogravimetric analysis. This suggests that these materials, which are relatively cheap and easily fabricated, could find application in fuel cells in intermediate temperature ranges where many other membrane materials are not suitable. Y1 - 2012 U6 - https://doi.org/10.1039/c2jm00037g SN - 0959-9428 VL - 22 IS - 33 SP - 17140 EP - 17146 PB - Royal Society of Chemistry CY - Cambridge ER -