TY - JOUR A1 - Gaedke, Ursula A1 - Kamjunke, Norbert T1 - Structural and functional properties of low- and high-diversity planktonic food webs N2 - To test the consequences of decreased diversity and exclusion of keystone species, we compared the planktonic food webs in two acidic (pH <= 3), species-poor mining lakes with those in two species-rich, neutral lakes. The ratio of heterotrophic to autotrophic biomass (HIA) was similar in acidic and neutral lakes with comparable productivity. However, food webs in both acidic lakes were largely restricted to two trophic levels in contrast to the four levels found in neutral lakes. This restriction in food chain length was attributed to the absence of efficient secondary consumers, rather than to productivity or lake size which resulted in unusually low predator-prey weight ratios, with small top predators hardly exceeding their pry in size. In contrast to the neutral lakes, plankton biomass size spectra of acidic lakes were discontinuous due to a lack of major functional groups. The unique size-dependence of feeding modes in pelagic food webs, with bacteria in the smallest size classes followed by autotrophs, herbivores and carnivores, was maintained for bacteria but the other feeding modes strongly overlapped in size. Thus, their characteristic succession along the size gradient was roughly preserved under extreme conditions but the flow of energy along the size gradient was truncated in the acidic lakes. For most but not all attributes studied, differences were larger between acidic and neutral lakes than between neutral lakes of different trophic state Y1 - 2006 UR - http://plankt.oxfordjournals.org/ U6 - https://doi.org/10.1093/plankt/fb1003 SN - 0142-7873 ER - TY - JOUR A1 - Bell, Elanor M. A1 - Weithoff, Guntram A1 - Gaedke, Ursula T1 - Temporal dynamics and growth of Actinophrys sol (Sarcodina: Heliozoa), the top predator in an extremely acidic lake N2 - 1. The in situ abundance, biomass and mean cell volume of Actinophrys sol (Sarcodina: Heliozoa), the top predator in an extremely acidic German mining lake (Lake 111; pH 2.65), were determined over three consecutive years (spring to autumn, 2001-03). 2. Actinophrys sol exhibited pronounced temporal and vertical patterns in abundance, biomass and mean cell volume. Increasing from very low spring densities, maxima in abundance and biomass were observed in late June/early July and September. The highest mean abundance recorded during the study was 7 x 10(3) Heliozoa L-1. Heliozoan abundance and biomass were higher in the epilimnion than in the hypolimnion. Actinophrys sol cells from this acidic lake were smaller than individuals of the same species found in other aquatic systems. 3. We determined the growth rate of A. sol using all potential prey items available in, and isolated and cultured from, Lake 111. Prey items included: single-celled and filamentous bacteria of unknown taxonomic affinity, the mixotrophic flagellates Chlamydomonas acidophila and Ochromonas sp., the ciliate Oxytricha sp. and the rotifers Elosa worallii and Cephalodella hoodi. Actinophrys sol fed over a wide-size spectrum from bacteria to metazoans. Positive growth was not supported by all naturally available prey. Actinophrys sol neither increased in cell number (k) nor biomass (k(b)) when starved, with low concentrations of single-celled bacteria or with the alga Ochromonas sp. Positive growth was achieved with single- celled bacteria (k = 0.22 +/- 0.02 d(-1); k(b) = -0.06 +/- 0.02 d(-1)) and filamentous bacteria (k = 0.52 +/- < 0.01 d(- 1); k(b) = 0.66 d(-1)) at concentrations greater than observed in situ, and the alga C. acidophila (up to k = 0.43 +/- 0.03 d(-1); k(b) = 0.44 +/- 0.04 d(-1)), the ciliate Oxytricha sp. (k = 0.34 +/- 0.01 d(-1)) and in mixed cultures containing rotifers and C. acidophila (k = 0.23 +/- 0.02-0.32 +/- 0.02 d(-1); maximum k(b) = 0.42 +/- 0.05 d(-1)). The individual- and biomass-based growth of A. sol was highest when filamentous bacteria were provided. 4. Existing quantitative carbon flux models for the Lake 111 food web can be updated in light of our results. Actinophrys sol are omnivorous predators supported by a mixed diet of filamentous bacteria and C. acidophila in the epilimnion. Heliozoa are important components in the planktonic food webs of 'extreme' environments Y1 - 2006 UR - http://www3.interscience.wiley.com/cgi-bin/issn?DESCRIPTOR=PRINTISSN&VALUE=0046-5070 U6 - https://doi.org/10.1111/j.1365-2427.2006.01561.x SN - 0046-5070 ER - TY - JOUR A1 - Tirok, Katrin A1 - Gaedke, Ursula T1 - Spring weather determines the relative importance of ciliates, rotifers and crustaceans for the initiation of the clear-water phase in a large, deep lake N2 - Clear-water phase (CWP) is an important event in seasonal plankton succession. We examined the influence of all herbivorous zooplankton on its initiation under different weather and climatic conditions using up to 19 years of observations from the large, deep Lake Constance (Europe) and estimates of relative clearance rates. A CWP occurred regularly, even if daphnid biomass was still very low. CWP was attributed to strong grazing either by a daphnid- dominated zooplankton community or by a diverse assemblage consisting of micro- and meso-zooplankton. Both types of zooplankton communities occurred with approximately the same frequency. The timing of the CWP was unrelated to the North Atlantic Oscillation (NAO) but correlated with the wind-dependent intensity of deep vertical mixing 3 months earlier, during early spring. Less mixing enabled early growth of phytoplankton, ciliates and rotifers despite low temperatures, which prevented daphnid development at this time. This resulted in enhanced grazing of ciliates and rotifers, which increased the importance of phytoplankton less edible for most ciliates, rotifers and daphnids. Ciliates clearly dominated the grazing pressure on phytoplankton throughout spring, maintaining high biomasses together with the phytoplankton for up to 2 months. A CWP was observed when herbivores grazing on larger phytoplankton developed in addition to ciliates Y1 - 2006 ER - TY - JOUR A1 - Huber, Veronika A1 - Gaedke, Ursula T1 - The role of predation for seasonal variability patterns among phytoplankton and ciliates N2 - Investigating the mechanisms which underlie the biomass fluctuations of populations and communities is important to better understand the processes which buffer community biomass in a variable environment. Based on long- term data of plankton biomass in Lake Constance (Bodensee), this study aims at explaining the different degree of synchrony among populations observed within two freshwater plankton groups, phytoplankton and ciliates. Established measures of temporal variability such as the variance ratio and cross-correlation coefficients were combined with first- order autoregressive models that allow estimating species interactions from time-series data. We found that predation was an important driver of the observed seasonal variability patterns in phytoplankton and ciliates, and that competitive interactions only played a subordinate role. In Lake Constance copepods and cladocerans, two major invertebrate predator groups, focus their grazing pressure at different times of the season. Model results suggested that compensatory dynamics detected in phytoplankton originate from the differential vulnerability of species to either one of these two predator groups. For ciliates model results advocated that synchrony among species occurs because ciliates tend to be vulnerable to both predator groups. Our findings underline the necessity of extending studies of community variability to multiple trophic levels because accounting for predator-prey interactions may often be more important than accounting for competitive interactions at one trophic level Y1 - 2006 UR - http://www3.interscience.wiley.com/cgi-bin/issn?DESCRIPTOR=PRINTISSN&VALUE=0030-1299 U6 - https://doi.org/10.1111/j.2006.0030-1299.14753.x SN - 0030-1299 ER -