TY - JOUR A1 - Diallo, Mamadou Sanou A1 - Kulesh, Michail A1 - Holschneider, Matthias A1 - Kurennaya, Kristina A1 - Scherbaum, Frank T1 - Instantaneous polarization attributes based on an adaptive approximate covariance method JF - Geophysics N2 - We introduce a method for computing instantaneous-polarization attributes from multicomponent signals. This is an improvement on the standard covariance method (SCM) because it does not depend on the window size used to compute the standard covariance matrix. We overcome the window-size problem by deriving an approximate analytical formula for the cross-energy matrix in which we automatically and adaptively determine the time window. The proposed method uses polarization analysis as applied to multicomponent seismic by waveform separation and filtering. Y1 - 2006 U6 - https://doi.org/10.1190/1.2227522 SN - 0016-8033 SN - 1942-2156 (0nline) VL - 71 IS - 5 SP - V99 EP - V104 PB - SEG CY - Tulsa ER - TY - JOUR A1 - Diallo, Mamadou Sanou A1 - Kulesh, Michail A1 - Holschneider, Matthias A1 - Scherbaum, Frank A1 - Adler, Frank T1 - Characterization of polarization attributes of seismic waves using continuous wavelet transforms N2 - Complex-trace analysis is the method of choice for analyzing polarized data. Because particle motion can be represented by instantaneous attributes that show distinct features for waves of different polarization characteristics, it can be used to separate and characterize these waves. Traditional methods of complex-trace analysis only give the instantaneous attributes as a function of time or frequency. However. for transient wave types or seismic events that overlap in time, an estimate of the polarization parameters requires analysis of the time-frequency dependence of these attributes. We propose a method to map instantaneous polarization attributes of seismic signals in the wavelet domain and explicitly relate these attributes with the wavelet-transform coefficients of the analyzed signal. We compare our method with traditional complex-trace analysis using numerical examples. An advantage of our method is its possibility of performing the complete wave-mode separation/ filtering process in the wavelet domain and its ability to provide the frequency dependence of ellipticity, which contains important information on the subsurface structure. Furthermore, using 2-C synthetic and real seismic shot gathers, we show how to use the method to separate different wave types and identify zones of interfering wave modes Y1 - 2006 UR - http://geophysics.geoscienceworld.org/ U6 - https://doi.org/10.1190/1.2194511 SN - 0016-8033 ER -