TY - JOUR A1 - Klein, Markus A1 - Rosenberger, Elke T1 - The tunneling effect for a class of difference operators JF - Reviews in Mathematical Physics N2 - We analyze a general class of self-adjoint difference operators H-epsilon = T-epsilon + V-epsilon on l(2)((epsilon Z)(d)), where V-epsilon is a multi-well potential and v(epsilon) is a small parameter. We give a coherent review of our results on tunneling up to new sharp results on the level of complete asymptotic expansions (see [30-35]). Our emphasis is on general ideas and strategy, possibly of interest for a broader range of readers, and less on detailed mathematical proofs. The wells are decoupled by introducing certain Dirichlet operators on regions containing only one potential well. Then the eigenvalue problem for the Hamiltonian H-epsilon is treated as a small perturbation of these comparison problems. After constructing a Finslerian distance d induced by H-epsilon, we show that Dirichlet eigenfunctions decay exponentially with a rate controlled by this distance to the well. It follows with microlocal techniques that the first n eigenvalues of H-epsilon converge to the first n eigenvalues of the direct sum of harmonic oscillators on R-d located at several wells. In a neighborhood of one well, we construct formal asymptotic expansions of WKB-type for eigenfunctions associated with the low-lying eigenvalues of H-epsilon. These are obtained from eigenfunctions or quasimodes for the operator H-epsilon acting on L-2(R-d), via restriction to the lattice (epsilon Z)(d). Tunneling is then described by a certain interaction matrix, similar to the analysis for the Schrodinger operator (see [22]), the remainder is exponentially small and roughly quadratic compared with the interaction matrix. We give weighted l(2)-estimates for the difference of eigenfunctions of Dirichlet-operators in neighborhoods of the different wells and the associated WKB-expansions at the wells. In the last step, we derive full asymptotic expansions for interactions between two "wells" (minima) of the potential energy, in particular for the discrete tunneling effect. Here we essentially use analysis on phase space, complexified in the momentum variable. These results are as sharp as the classical results for the Schrodinger operator in [22]. KW - Semiclassical difference operator KW - tunneling KW - interaction matrix KW - asymptotic expansion KW - multi-well potential KW - Finsler distance KW - Agmon estimates Y1 - 2018 U6 - https://doi.org/10.1142/S0129055X18300029 SN - 0129-055X SN - 1793-6659 VL - 30 IS - 4 PB - World Scientific CY - Singapore ER - TY - THES A1 - Ludewig, Matthias T1 - Path integrals on manifolds with boundary and their asymptotic expansions T1 - Pfadintegrale auf Mannigfaltigkeiten mit Rand und ihre asymptotischen Entwicklungen N2 - It is "scientific folklore" coming from physical heuristics that solutions to the heat equation on a Riemannian manifold can be represented by a path integral. However, the problem with such path integrals is that they are notoriously ill-defined. One way to make them rigorous (which is often applied in physics) is finite-dimensional approximation, or time-slicing approximation: Given a fine partition of the time interval into small subintervals, one restricts the integration domain to paths that are geodesic on each subinterval of the partition. These finite-dimensional integrals are well-defined, and the (infinite-dimensional) path integral then is defined as the limit of these (suitably normalized) integrals, as the mesh of the partition tends to zero. In this thesis, we show that indeed, solutions to the heat equation on a general compact Riemannian manifold with boundary are given by such time-slicing path integrals. Here we consider the heat equation for general Laplace type operators, acting on sections of a vector bundle. We also obtain similar results for the heat kernel, although in this case, one has to restrict to metrics satisfying a certain smoothness condition at the boundary. One of the most important manipulations one would like to do with path integrals is taking their asymptotic expansions; in the case of the heat kernel, this is the short time asymptotic expansion. In order to use time-slicing approximation here, one needs the approximation to be uniform in the time parameter. We show that this is possible by giving strong error estimates. Finally, we apply these results to obtain short time asymptotic expansions of the heat kernel also in degenerate cases (i.e. at the cut locus). Furthermore, our results allow to relate the asymptotic expansion of the heat kernel to a formal asymptotic expansion of the infinite-dimensional path integral, which gives relations between geometric quantities on the manifold and on the loop space. In particular, we show that the lowest order term in the asymptotic expansion of the heat kernel is essentially given by the Fredholm determinant of the Hessian of the energy functional. We also investigate how this relates to the zeta-regularized determinant of the Jacobi operator along minimizing geodesics. N2 - Es ist "wissenschaftliche Folklore", abgeleitet von der physikalischen Anschauung, dass Lösungen der Wärmeleitungsgleichung auf einer riemannschen Mannigfaltigkeit als Pfadintegrale dargestellt werden können. Das Problem mit Pfadintegralen ist allerdings, dass schon deren Definition Mathematiker vor gewisse Probleme stellt. Eine Möglichkeit, Pfadintegrale rigoros zu definieren ist endlich-dimensionale Approximation, oder time-slicing-Approximation: Für eine gegebene Unterteilung des Zeitintervals in kleine Teilintervalle schränkt man den Integrationsbereich auf diejenigen Pfade ein, die auf jedem Teilintervall geodätisch sind. Diese endlichdimensionalen Integrale sind wohldefiniert, und man definiert das (unendlichdimensionale) Pfadintegral als den Limes dieser (passend normierten) Integrale, wenn die Feinheit der Unterteilung gegen Null geht. In dieser Arbeit wird gezeigt, dass Lösungen der Wärmeleitungsgleichung auf einer allgemeinen riemannschen Mannigfaltigkeit tatsächlich durch eine solche endlichdimensionale Approximation gegeben sind. Hierbei betrachten wir die Wärmeleitungsgleichung für allgemeine Operatoren von Laplace-Typ, die auf Schnitten in Vektorbündeln wirken. Wir zeigen auch ähnliche Resultate für den Wärmekern, wobei wir uns allerdings auf Metriken einschränken müssen, die eine gewisse Glattheitsbedingung am Rand erfüllen. Eine der wichtigsten Manipulationen, die man an Pfadintegralen vornehmen möchte, ist das Bilden ihrer asymptotischen Entwicklungen; in Falle des Wärmekerns ist dies die Kurzzeitasymptotik. Um die endlich-dimensionale Approximation hier nutzen zu können, ist es nötig, dass die Approximation uniform im Zeitparameter ist. Dies kann in der Tat erreicht werden; zu diesem Zweck geben wir starke Fehlerabschätzungen an. Schließlich wenden wir diese Resultate an, um die Kurzzeitasymptotik des Wärmekerns (auch im degenerierten Fall, d.h. am Schittort) herzuleiten. Unsere Resultate machen es außerdem möglich, die asymptotische Entwicklung des Wärmekerns mit einer formalen asymptotischen Entwicklung der unendlichdimensionalen Pfadintegrale in Verbindung zu bringen. Auf diese Weise erhält man Beziehungen zwischen geometrischen Größen der zugrundeliegenden Mannigfaltigkeit und solchen des Pfadraumes. Insbesondere zeigen wir, dass der Term niedrigster Ordnung in der asymptotischen Entwicklung des Wärmekerns im Wesentlichen durch die Fredholm-Determinante der Hesseschen des Energie-Funktionals gegeben ist. Weiterhin untersuchen wir die Verbindung zur zeta-regularisierten Determinante des Jakobi-Operators entlang von minimierenden Geodätischen. KW - heat equation KW - heat kernel KW - path integral KW - determinant KW - asymptotic expansion KW - Laplace expansion KW - heat asymptotics KW - Wiener measure KW - Wärmeleitungsgleichung KW - Wärmekern KW - Pfadintegrale KW - asymptotische Entwicklung KW - Determinante Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-94387 ER - TY - INPR A1 - Ly, Ibrahim A1 - Tarkhanov, Nikolai Nikolaevich T1 - Asymptotic expansions at nonsymmetric cuspidal points N2 - We study asymptotics of solutions to the Dirichlet problem in a domain whose boundary contains a nonsymmetric conical point. We establish a complete asymptotic expansion of solutions near the singular point. T3 - Preprints des Instituts für Mathematik der Universität Potsdam - 4 (2015) 7 KW - the Dirichlet problem KW - singular point KW - asymptotic expansion Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-78199 SN - 2193-6943 VL - 4 IS - 7 PB - Universitätsverlag Potsdam CY - Potsdam ER -