TY - JOUR A1 - Negrete, Jose A1 - Pumir, Alain A1 - Hsu, Hsin-Fang A1 - Westendorf, Christian A1 - Tarantola, Marco A1 - Beta, Carsten A1 - Bodenschatz, Eberhard T1 - Noisy Oscillations in the Actin Cytoskeleton of Chemotactic Amoeba JF - Physical review letters N2 - Biological systems with their complex biochemical networks are known to be intrinsically noisy. Here we investigate the dynamics of actin polymerization of amoeboid cells, which are close to the onset of oscillations. We show that the large phenotypic variability in the polymerization dynamics can be accurately captured by a generic nonlinear oscillator model in the presence of noise. We determine the relative role of the noise with a single dimensionless, experimentally accessible parameter, thus providing a quantitative description of the variability in a population of cells. Our approach, which rests on a generic description of a system close to a Hopf bifurcation and includes the effect of noise, can characterize the dynamics of a large class of noisy systems close to an oscillatory instability. Y1 - 2016 U6 - https://doi.org/10.1103/PhysRevLett.117.148102 SN - 0031-9007 SN - 1079-7114 VL - 117 PB - American Physical Society CY - College Park ER - TY - GEN A1 - Westendorf, Christian A1 - Bae, Albert J. A1 - Erlenkamper, Christoph A1 - Galland, Edouard A1 - Franck, Carl A1 - Bodenschatz, Eberhard A1 - Beta, Carsten T1 - Live cell flattening BT - traditional and novel approaches T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Eukaryotic cell flattening is valuable for improving microscopic observations, ranging from bright field (BF) to total internal reflection fluorescence (TIRF) microscopy. Fundamental processes, such as mitosis and in vivo actin polymerization, have been investigated using these techniques. Here, we review the well known agar overlayer protocol and the oil overlay method. In addition, we present more elaborate microfluidics-based techniques that provide us with a greater level of control. We demonstrate these techniques on the social amoebae Dictyostelium discoideum, comparing the advantages and disadvantages of each method. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 835 KW - PDMS KW - microfluidic device KW - lower channel KW - total internal reflection fluorescence KW - total internal reflection fluorescence microscopy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-428311 SN - 1866-8372 IS - 835 ER - TY - JOUR A1 - Schaefer, Edith A1 - Westendorf, Christian A1 - Bodenschatz, Eberhard A1 - Beta, Carsten A1 - Geil, Burkhard A1 - Janshoff, Andreas T1 - Shape oscillations of dictyostelium discoideum cells on ultramicroelectrodes monitored by impedance analysis JF - Small Y1 - 2011 U6 - https://doi.org/10.1002/smll.201001955 SN - 1613-6810 VL - 7 IS - 6 SP - 723 EP - 726 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Westendorf, Christian A1 - Negrete, Jose A1 - Bae, Albert J. A1 - Sandmann, Rabea A1 - Bodenschatz, Eberhard A1 - Beta, Carsten T1 - Actin cytoskeleton of chemotactic amoebae operates close to the onset of oscillations JF - Proceedings of the National Academy of Sciences of the United States of America N2 - The rapid reorganization of the actin cytoskeleton in response to external stimuli is an essential property of many motile eukaryotic cells. Here, we report evidence that the actin machinery of chemotactic Dictyostelium cells operates close to an oscillatory instability. When averaging the actin response of many cells to a short pulse of the chemoattractant cAMP, we observed a transient accumulation of cortical actin reminiscent of a damped oscillation. At the single-cell level, however, the response dynamics ranged from short, strongly damped responses to slowly decaying, weakly damped oscillations. Furthermore, in a small subpopulation, we observed self-sustained oscillations in the cortical F-actin concentration. To substantiate that an oscillatory mechanism governs the actin dynamics in these cells, we systematically exposed a large number of cells to periodic pulse trains of different frequencies. Our results indicate a resonance peak at a stimulation period of around 20 s. We propose a delayed feedback model that explains our experimental findings based on a time-delay in the regulatory network of the actin system. To test the model, we performed stimulation experiments with cells that express GFP-tagged fusion proteins of Coronin and actin-interacting protein 1, as well as knockout mutants that lack Coronin and actin-interacting protein 1. These actin-binding proteins enhance the disassembly of actin filaments and thus allow us to estimate the delay time in the regulatory feedback loop. Based on this independent estimate, our model predicts an intrinsic period of 20 s, which agrees with the resonance observed in our periodic stimulation experiments. KW - Dictyostelium discoideum KW - microfluidics KW - caged cAMP KW - delay-differential equation Y1 - 2013 U6 - https://doi.org/10.1073/pnas.1216629110 SN - 0027-8424 VL - 110 IS - 10 SP - 3853 EP - 3858 PB - National Acad. of Sciences CY - Washington ER -