TY - JOUR A1 - Seifert, Linda I. A1 - Weithoff, Guntram A1 - Gaedke, Ursula A1 - Vos, Matthijs T1 - Warming-induced changes in predation, extinction and invasion in an ectotherm food web JF - Oecologia N2 - Climate change will alter the forces of predation and competition in temperate ectotherm food webs. This may increase local extinction rates, change the fate of invasions and impede species reintroductions into communities. Invasion success could be modulated by traits (e.g., defenses) and adaptations to climate. We studied how different temperatures affect the time until extinction of species, using bitrophic and tritrophic planktonic food webs to evaluate the relative importance of predatory overexploitation and competitive exclusion, at 15 and 25 A degrees C. In addition, we tested how inclusion of a subtropical as opposed to a temperate strain in this model food web affects times until extinction. Further, we studied the invasion success of the temperate rotifer Brachionus calyciflorus into the planktonic food web at 15 and 25 A degrees C on five consecutive introduction dates, during which the relative forces of predation and competition differed. A higher temperature dramatically shortened times until extinction of all herbivore species due to carnivorous overexploitation in tritrophic systems. Surprisingly, warming did not increase rates of competitive exclusion among the tested herbivore species in bitrophic communities. Including a subtropical herbivore strain reduced top-down control by the carnivore at high temperature. Invasion attempts of temperate B. calyciflorus into the food web always succeeded at 15 A degrees C, but consistently failed at 25 A degrees C due to voracious overexploitation by the carnivore. Pre-induction of defenses (spines) in B. calyciflorus before the invasion attempt did not change its invasion success at the high temperature. We conclude that high temperatures may promote local extinctions in temperate ectotherms and reduce their chances of successful recovery. KW - Community dynamics KW - Freshwater ecosystem KW - Global warming KW - Species range shift KW - Trophic interactions Y1 - 2015 U6 - https://doi.org/10.1007/s00442-014-3211-4 SN - 0029-8549 SN - 1432-1939 VL - 178 IS - 2 SP - 485 EP - 496 PB - Springer CY - New York ER - TY - JOUR A1 - Seifert, Linda I. A1 - Weithoff, Guntram A1 - Vos, Matthijs T1 - Extreme heat changes post-heat wave community reassembly JF - Ecology and evolution N2 - Climate forecasts project further increases in extremely high-temperature events. These present threats to biodiversity, as they promote population declines and local species extinctions. This implies that ecological communities will need to rely more strongly on recovery processes, such as recolonization from a meta-community context. It is poorly understood how differences in extreme event intensity change the outcome of subsequent community reassembly and if such extremes modify the biotic environment in ways that would prevent the successful re-establishment of lost species. We studied replicated aquatic communities consisting of algae and herbivorous rotifers in a design that involved a control and two different heat wave intensity treatments (29 degrees C and 39 degrees C). Animal species that suffered heat-induced extinction were subsequently re-introduced at the same time and density, in each of the two treatments. The 39 degrees C treatment led to community closure in all replicates, meaning that a previously successful herbivore species could not re-establish itself in the postheat wave community. In contrast, such closure never occurred after a 29 degrees C event. Heat wave intensity determined the number of herbivore extinctions and strongly affected algal relative abundances. Re-introduced herbivore species were thus confronted with significantly different food environments. This ecological legacy generated by heat wave intensity led to differences in the failure or success of herbivore species re-introductions. Reassembly was significantly more variable, and hence less predictable, after an extreme heat wave, and was more canalized after a moderate one. Our results pertain to relatively simple communities, but they suggest that ecological legacies introduced by extremely high-temperature events may change subsequent ecological recovery and even prevent the successful re-establishment of lost species. Knowing the processes promoting and preventing ecological recovery is crucial to the success of species re-introduction programs and to our ability to restore ecosystems damaged by environmental extremes. KW - Biodiversity KW - climate change KW - conservation KW - ecological restoration KW - extinction KW - extreme temperature events KW - global warming KW - maximum temperature KW - variability Y1 - 2015 U6 - https://doi.org/10.1002/ece3.1490 SN - 2045-7758 VL - 5 IS - 11 SP - 2140 EP - 2148 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Seifert, Linda I. A1 - de Castro, Francisco A1 - Marquart, Arnim A1 - Gaedke, Ursula A1 - Weithoff, Guntram A1 - Vos, Matthijs T1 - Heated relations: temperature-mediated shifts in consumption across trophic levels JF - PLoS one N2 - A rise in temperature will intensify the feeding links involving ectotherms in food webs. However, it is unclear how the effects will quantitatively differ between the plant-herbivore and herbivore-carnivore interface. To test how warming could differentially affect rates of herbivory and carnivory, we studied trophic interaction strength in a food chain comprised of green algae, herbivorous rotifers and carnivorous rotifers at 10, 15, 20 and 25 degrees C. We found significant warming-induced changes in feeding by both herbivorous and carnivorous rotifers, but these responses occurred at different parts of the entire temperature gradient. The strongest response of the per capita herbivore's ingestion rate occurred due to an increase in temperature from 15 to 20 degrees C (1.9 fold: from 834 to 1611 algal cells per h(-1)) and of the per capita carnivore's ingestion rate from 20 to 25 degrees C (1.6 fold: from 1.5 to 2.5 prey h(-1)). Handling time, an important component of a consumer's functional response, significantly decreased from 15 to 20 degrees C in herbivorous rotifers. In contrast, it decreased from 20 to 25 degrees C in carnivorous rotifers. Attack rates significantly and strongly increased from 10 to 25 degrees C in the herbivorous animals, but not at all in the carnivores. Our results exemplify how the relative forces of top-down control exerted by herbivores and carnivores may strongly shift under global warming. But warming, and its magnitude, are not the only issue: If our results would prove to be representative, shifts in ectotherm interactions will quantitatively differ when a 5 degrees C increase starts out from a low, intermediate or high initial temperature. This would imply that warming could have different effects on the relative forces of carnivory and herbivory in habitats differing in average temperature, as would exist at different altitudes and latitudes. Y1 - 2014 U6 - https://doi.org/10.1371/journal.pone.0095046 SN - 1932-6203 VL - 9 IS - 5 PB - PLoS CY - San Fransisco ER -