TY - JOUR A1 - Sowemimo, Oluwakemi T. A1 - Knox-Brown, Patrick A1 - Borcherds, Wade A1 - Rindfleisch, Tobias A1 - Thalhammer, Anja A1 - Daughdrill, Gary W. T1 - Conserved Glycines Control Disorder and Function in the Cold-Regulated Protein, COR15A JF - Biomolecules N2 - Cold-regulated (COR) 15A is an intrinsically disordered protein (IDP) from Arabidopsis thaliana important for freezing tolerance. During freezing-induced cellular dehydration, COR15A transitions from a disordered to mostly alpha-helical structure. We tested whether mutations that increase the helicity of COR15A also increase its protective function. Conserved glycine residues were identified and mutated to alanine. Nuclear magnetic resonance (NMR) spectroscopy was used to identify residue-specific changes in helicity for wildtype (WT) COR15A and the mutants. Circular dichroism (CD) spectroscopy was used to monitor the coil-helix transition in response to increasing concentrations of trifluoroethanol (TFE) and ethylene glycol. The impact of the COR15A mutants on the stability of model membranes during a freeze-thaw cycle was investigated by fluorescence spectroscopy. The results of these experiments showed the mutants had a higher content of alpha-helical structure and the increased alpha-helicity improved membrane stabilization during freezing. Comparison of the TFE- and ethylene glycol-induced coil-helix transitions support our conclusion that increasing the transient helicity of COR15A in aqueous solution increases its ability to stabilize membranes during freezing. Altogether, our results suggest the conserved glycine residues are important for maintaining the disordered structure of COR15A but are also compatible with the formation of alpha-helical structure during freezing induced dehydration. KW - COR15A KW - Late embryogenesis abundant KW - intrinsically disordered proteins KW - Trifluoroethanol KW - Nuclear magnetic resonance Y1 - 2019 U6 - https://doi.org/10.3390/biom9030084 SN - 2218-273X VL - 9 IS - 3 PB - MDPI CY - Basel ER - TY - JOUR A1 - Shou, Keyun A1 - Bremer, Anne A1 - Rindfleisch, Tobias A1 - Knox-Brown, Patrick A1 - Hirai, Mitsuhiro A1 - Rekas, Agata A1 - Garvey, Christopher J. A1 - Hincha, Dirk K. A1 - Stadler, Andreas M. A1 - Thalhammer, Anja T1 - Conformational selection of the intrinsically disordered plant stress protein COR15A in response to solution osmolarity - an X-ray and light scattering study JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - The plant stress protein COR15A stabilizes chloroplast membranes during freezing. COR15A is an intrinsically disordered protein (IDP) in aqueous solution, but acquires an alpha-helical structure during dehydration or the increase of solution osmolarity. We have used small- and wide-angle X-ray scattering (SAXS/WAXS) combined with static and dynamic light scattering (SLS/DLS) to investigate the structural and hydrodynamic properties of COR15A in response to increasing solution osmolarity. Coarse-grained ensemble modelling allowed a structure-based interpretation of the SAXS data. Our results demonstrate that COR15A behaves as a biomacromolecule with polymer-like properties which strongly depend on solution osmolarity. Biomacromolecular self-assembly occurring at high solvent osmolarity is initiated by the occurrence of two specific structural subpopulations of the COR15A monomer. The osmolarity dependent structural selection mechanism is an elegant way for conformational regulation and assembly of COR15A. It highlights the importance of the polymer-like properties of IDPs for their associated biological function. Y1 - 2019 U6 - https://doi.org/10.1039/c9cp01768b SN - 1463-9076 SN - 1463-9084 VL - 21 IS - 34 SP - 18727 EP - 18740 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Knox-Brown, Patrick A1 - Rindfleisch, Tobias A1 - Günther, Anne A1 - Balow, Kim A1 - Bremer, Anne A1 - Walther, Dirk A1 - Miettinen, Markus S. A1 - Hincha, Dirk K. A1 - Thalhammer, Anja T1 - Similar Yet Different BT - Structural and Functional Diversity among Arabidopsis thaliana LEA_4 Proteins JF - International Journal of Molecular Sciences N2 - The importance of intrinsically disordered late embryogenesis abundant (LEA) proteins in the tolerance to abiotic stresses involving cellular dehydration is undisputed. While structural transitions of LEA proteins in response to changes in water availability are commonly observed and several molecular functions have been suggested, a systematic, comprehensive and comparative study of possible underlying sequence-structure-function relationships is still lacking. We performed molecular dynamics (MD) simulations as well as spectroscopic and light scattering experiments to characterize six members of two distinct, lowly homologous clades of LEA_4 family proteins from Arabidopsis thaliana. We compared structural and functional characteristics to elucidate to what degree structure and function are encoded in LEA protein sequences and complemented these findings with physicochemical properties identified in a systematic bioinformatics study of the entire Arabidopsis thaliana LEA_4 family. Our results demonstrate that although the six experimentally characterized LEA_4 proteins have similar structural and functional characteristics, differences concerning their folding propensity and membrane stabilization capacity during a freeze/thaw cycle are obvious. These differences cannot be easily attributed to sequence conservation, simple physicochemical characteristics or the abundance of sequence motifs. Moreover, the folding propensity does not appear to be correlated with membrane stabilization capacity. Therefore, the refinement of LEA_4 structural and functional properties is likely encoded in specific patterns of their physicochemical characteristics. KW - IDP KW - LEA protein KW - abiotic stress KW - dehydration KW - conformational rearrangement KW - membrane stabilization KW - sequence-structure-function relationship Y1 - 2020 U6 - https://doi.org/10.3390/ijms21082794 SN - 1422-0067 VL - 21 IS - 8 PB - Molecular Diversity Preservation International CY - Basel ER -