TY - JOUR A1 - Raju, Rajarshi Roy A1 - Koetz, Joachim T1 - Pickering Janus emulsions stabilized with gold nanoparticles JF - Langmuir : the ACS journal of surfaces and colloids / American Chemical Society N2 - We report a modified approach to the batch scale preparation of completely engulfed core-shell emulsions or partially engulfed Janus emulsions with colorful optical properties, containing water, olive oil, and silicone oil. The in situ reduction of gold chloride, forming gold nanoparticles (AuNPs) at the olive oil interface in the absence or presence of chitosan, leads to the formation of compartmentalized olive-silicone oil emulsion droplets in water. In the absence of additional reducing components, time-dependent morphological transformations from partial engulfment to complete engulfment were observed. Similar experiments in the presence of chitosan or presynthesized AuNPs show an opposite time-dependent trend of transformation of core-shell structures into partially engulfed ones. This behavior can be understood by a time-dependent rearrangement of the AuNPs at the interface and changes of the interfacial tension. The Pickering effect of AuNPs at oil-water and oil-oil interfaces brings not only color effects to individual microdroplets, which are of special relevance for the preparation of new optical elements, but also a surprising self-assembly of droplets. Y1 - 2022 U6 - https://doi.org/10.1021/acs.langmuir.1c02256 SN - 0743-7463 SN - 1520-5827 VL - 38 IS - 1 SP - 147 EP - 155 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Raju, Rajarshi Roy A1 - Koetz, Joachim T1 - Inner rotation of Pickering Janus emulsions JF - Nanomaterials : open access journal N2 - Janus droplets were prepared by vortex mixing of three non-mixable liquids, i.e., olive oil, silicone oil and water, in the presence of gold nanoparticles (AuNPs) in the aqueous phase and magnetite nanoparticles (MNPs) in the olive oil. The resulting Pickering emulsions were stabilized by a red-colored AuNP layer at the olive oil/water interface and MNPs at the oil/oil interface. The core–shell droplets can be stimulated by an external magnetic field. Surprisingly, an inner rotation of the silicon droplet is observed when MNPs are fixed at the inner silicon droplet interface. This is the first example of a controlled movement of the inner parts of complex double emulsions by magnetic manipulation via interfacially confined magnetic nanoparticles. KW - Janus droplets KW - Pickering emulsions KW - magnetic manipulation KW - gold nanoparticles KW - magnetite nanoparticles Y1 - 2021 U6 - https://doi.org/10.3390/nano11123312 SN - 2079-4991 VL - 11 IS - 12 PB - MDPI CY - Basel ER - TY - JOUR A1 - Raju, Rajarshi Roy A1 - Liebig, Ferenc A1 - Klemke, Bastian A1 - Koetz, Joachim T1 - pH-responsive magnetic Pickering Janus emulsions JF - Colloid and polymer science : official journal of the Kolloid-Gesellschaft N2 - We report ultrasonically generated pH-responsive Pickering Janus emulsions of olive oil and silicone oil with controllable droplet size and engulfment. Chitosan was used as a pH-responsive emulsifier. The increase of pH from 2 to 6 leads to a transition from completely engulfed double emulsion droplets to dumbbell-shaped Janus droplets accompanied by a significant decrease of droplet diameter and a more homogeneous size distribution. The results can be elucidated by the conformational change of chitosan from a more extended form at pH 2 to a more flexible form at pH 4-5. Magnetic responsiveness to the emulsion was attributed by dispersing superparamagnetic nanoparticles (Fe3O4 with diameter of 13 +/- 2 nm) in the olive oil phase before preparing the Janus emulsion. Incorporation of magnetic nanoparticles leads to superior emulsion stability, drastically reduced droplet diameters, and opened the way to control movement and orientation of the Janus droplets according to an external magnetic field. KW - Janus emulsion KW - Chitosan KW - pH-responsive KW - Magnetic-responsive KW - Cryo-SEM KW - TEM Y1 - 2018 U6 - https://doi.org/10.1007/s00396-018-4321-z SN - 0303-402X SN - 1435-1536 VL - 296 IS - 6 SP - 1039 EP - 1046 PB - Springer CY - New York ER - TY - JOUR A1 - Raju, Rajarshi Roy A1 - Kosmella, Sabine A1 - Friberg, Stig E. A1 - Koetz, Joachim T1 - Pickering Janus emulsions and polyelectrolyte complex-stabilized Janus gels JF - Colloids and surfaces : an international journal devoted to the principles and applications of colloid and interface science ; A, Physicochemical and engineering aspects N2 - Janus emulsions, containing olive oil (OO) and silicone oil (SiO), were formed in presence of polyelectrolyte complex particles, i.e., gelatin-sodium polyacrylate (NaPAA) complexes. The diameter of completely engulfed Janus droplets can be tuned between 50 and 200 mu m by varying the gelatin/NaPAA complex particle size between 200 and 400 nm. The gelatin/NaPAA complex particles adsorbed at the olive oil interface decrease the interfacial tension and stabilize the resulting completely engulfed Pickering Janus emulsions. Long-term stable Janus gels can be synthesized in presence of gelatin/sodium carboxymethylcellulose (NaCMC) mixtures. In that case Coulombic forces are of relevance with regard to the stabilization of the Janus droplets embedded in a gelatin/NaCMC gel matrix. Janus gels show elastic reological behavior and thixotropic properties. KW - Pickering Janus emulsions KW - Janus gels KW - Interfacial tension KW - Ring tensiometry KW - Gelatin-NaCMC KW - Gelatin-NaPAA composites Y1 - 2017 U6 - https://doi.org/10.1016/j.colsurfa.2017.08.022 SN - 0927-7757 SN - 1873-4359 VL - 533 SP - 241 EP - 248 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Raju, Rajarshi Roy A1 - Liebig, Ferenc A1 - Klemke, Bastian A1 - Koetz, Joachim T1 - Ultralight magnetic aerogels from Janus emulsions JF - RSC Advances N2 - Magnetite containing aerogels were synthesized by freeze-drying olive oil/silicone oil-based Janus emulsion gels containing gelatin and sodium carboxymethylcellulose (NaCMC). The magnetite nanoparticles dispersed in olive oil are processed into the gel and remain in the macroporous aerogel after removing the oil components. The coexistence of macropores from the Janus droplets and mesopores from freeze-drying of the hydrogels in combination with the magnetic properties offer a special hierarchical pore structure, which is of relevance for smart supercapacitors, biosensors, and spilled oil sorption and separation. The morphology of the final structure was investigated in dependence on initial compositions. More hydrophobic aerogels with magnetic responsiveness were synthesized by bisacrylamide-crosslinking of the hydrogel. The crosslinked aerogels can be successfully used in magnetically responsive clean up experiments of the cationic dye methylene blue. Y1 - 2019 U6 - https://doi.org/10.1039/c9ra10247g SN - 2046-2069 VL - 10 IS - 13 SP - 7492 EP - 7499 PB - RSC Publishing CY - London ER - TY - JOUR A1 - Raju, Rajarshi Roy A1 - Liebig, Ferenc A1 - Hess, Andreas A1 - Schlaad, Helmut A1 - Koetz, Joachim T1 - Temperature-triggered reversible breakdown of polymer-stabilized olive BT - silicone oil Janus emulsions JF - RSC Advances N2 - A one-step moderate energy vibrational emulsification method was successfully employed to produce thermo-responsive olive/silicone-based Janus emulsions stabilized by poly(N,N-diethylacrylamide) carrying 0.7 mol% oleoyl side chains. Completely engulfed emulsion droplets remained stable at room temperature and could be destabilized on demand upon heating to the transition temperature of the polymeric stabilizer. Time-dependent light micrographs demonstrate the temperature-induced breakdown of the Janus droplets, which opens new aspects of application, for instance in biocatalysis. KW - microgels KW - step Y1 - 2019 U6 - https://doi.org/10.1039/c9ra03463c SN - 2046-2069 VL - 9 IS - 35 SP - 19271 EP - 19277 PB - RSC Publishing CY - London ER -