TY - JOUR A1 - Bilbao-Lasa, Peru A1 - Jara Muñoz, Julius A1 - Pedoja, Kevin A1 - Álvarez, Irantzu A1 - Aranburu, Arantza A1 - Iriarte, Eneko A1 - Galparsoro, Ibon T1 - Submerged marine terraces identification and an approach for numerical modeling the sequence formation in the Bay of Biscay (Northeastern Iberian Peninsula) JF - Frontiers in Earth Science N2 - Submerged sequences of marine terraces potentially provide crucial information of past sea-level positions. However, the distribution and characteristics of drowned marine terrace sequences are poorly known at a global scale. Using bathymetric data and novel mapping and modeling techniques, we studied a submerged sequence of marine terraces in the Bay of Biscay with the objective to identify the distribution and morphologies of submerged marine terraces and the timing and conditions that allowed their formation and preservation. To accomplish the objectives a high-resolution bathymetry (5 m) was analyzed using Geographic Information Systems and TerraceM(R). The successive submerged terraces were identified using a Surface Classification Model, which linearly combines the slope and the roughness of the surface to extract fossil sea-cliffs and fossil rocky shore platforms. For that purpose, contour and hillshaded maps were also analyzed. Then, shoreline angles, a geomorphic marker located at the intersection between the fossil sea-cliff and platform, were mapped analyzing swath profiles perpendicular to the isobaths. Most of the submerged strandlines are irregularly preserved throughout the continental shelf. In summary, 12 submerged terraces with their shoreline angles between approximately: -13 m (T1), -30 and -32 m (T2), -34 and 41 m (T3), -44 and -47 m (T4), -49 and 53 m (T5), -55 and 58 m (T6), -59 and 62 m (T7), -65 and 67 m (T8), -68 and 70 m (T9), -74 and -77 m (T10), -83 and -86 m (T11) and -89 and 92 m (T12). Nevertheless, the ones showing the best lateral continuity and preservation in the central part of the shelf are T3, T4, T5, T7, T8, and T10. The age of the terraces has been estimated using a landscape evolution model. To simulate the formation and preservation of submerged terraces three different scenarios: (i) 20-0 ka; (ii) 128-0 ka; and (iii) 128-20 ka, were compared. The best scenario for terrace generation was between 128 and 20 Ka, where T3, T5, and T7 could have been formed. KW - marine terrace KW - submerged sequence KW - digital bathymetric model KW - TerraceM KW - numerical modeling KW - Bay of Biscay Y1 - 2020 U6 - https://doi.org/10.3389/feart.2020.00047 SN - 2296-6463 VL - 8 IS - 47 SP - 1 EP - 20 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Jara Muñoz, Julius A1 - Melnick, Daniel A1 - Pedoja, Kevin A1 - Strecker, Manfred T1 - TerraceM-2: A MatlabR (R) Interface for Mapping and Modeling Marine and Lacustrine Terraces JF - Frontiers in Earth Science N2 - The morphology of marine and lacustrine terraces has been largely used to measure past sea- and lake-level positions and estimate vertical deformation in a wealth of studies focused on climate and tectonic processes. To obtain accurate morphometric assessments of terrace morphology we present TerraceM-2, an improved version of our MatlabR (R) graphic-user interface that provides new methodologies for morphometric analyses as well as landscape evolution and fault-dislocation modeling. The new version includes novel routines to map the elevation and spatial distribution of terraces, to model their formation and evolution, and to estimate fault-slip rates from terrace deformation patterns. TerraceM-2 has significantly improves its processing speed and mapping capabilities, and includes separate functions for developing customized workflows beyond the graphic-user interface. We illustrate these new mapping and modeling capabilities with three examples: mapping lacustrine shorelines in the Dead Sea to estimate deformation across the Dead Sea Fault, landscape evolution modeling to estimate a history of uplift rates in southern Peru, and dislocation modeling of deformed marine terraces in California. These examples also illustrate the need to use topographic data of different resolutions. The new modeling and mapping routines of TerraceM-2 highlight the advantages of an integrated joint mapping and modeling approach to improve the efficiency and precision of coastal terrace metrics in both marine and lacustrine environments. KW - TerraceM KW - marine terraces KW - tectonic geomorphology KW - geomorphic markers KW - LiDAR KW - coastal geomorphology KW - neotectonics KW - morphometry Y1 - 2019 U6 - https://doi.org/10.3389/feart.2019.00255 SN - 2296-6463 VL - 7 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Nexer, Maelle A1 - Authemayou, Christine A1 - Schildgen, Taylor F. A1 - Hantoro, Wahyoe S. A1 - Molliex, Stephane A1 - Delcaillau, Bernard A1 - Pedoja, Kevin A1 - Husson, Laurent A1 - Regard, Vincent T1 - Evaluation of morphometric proxies for uplift on sequences of coral reef terraces: A case study from Sumba Island (Indonesia) JF - Geomorphology : an international journal on pure and applied geomorphology N2 - Sequences of coral reef terraces characterized by staircase morphologies and a homogeneous lithology make them appropriate to isolate the influence of uplift on drainage morphology. Along the northern coast of Sumba Island, Indonesia, we investigated the correlations between landscape morphology and uplift rates, which range from 0.02 to 0.6 mm.yr(-1). We studied eight morphometric indices at two scales: whole island (similar to 11,000 km(2)) and within sequences of reefal terraces (similar to 3000 km(2)). At the latter scale, we extracted morphometric indices for 15 individual catchments draining mostly the reefal terraces and for 30 areas undergoing specific ranges of uplift rates draining only the reefal terraces. Indices extracted from digital elevation models include residual relief, incision, stream gradient indices (SL and k(sn)), the hypsometric integral, drainage area, mean relief, and the shape factor. We find that SL, the hypsometric integral, mean relief and the shape factor of catchments positively correlate with uplift rates, whereas incision, residual relief, and k(sn) do not. More precisely, we find that only the areas that are uplifting at a rate faster than 03 mm.yr(-1) can yield the extreme values for these indices, implying that these extreme values are indicative of fast uplifting areas. However, the relationship is not bivalent because any uplift rate can be associated with low values of the same indices. For all indices, the transient conditions of the drainage influence the correlation with Pleistocene mean uplift rates, illustrating the necessity to extract morphometric indices with an appropriate choice of catchment scale. This type of analysis helps to identify the morphometric indices that are most useful for tectonic analysis in areas of unknown uplift, allowing for easy identification of short spatial variations of uplift rate and detection of areas with relatively fast uplift rates in unstudied coastal zones. (C) 2015 Elsevier B.V. All rights reserved. KW - Drainage morphometry KW - Coral reef terraces KW - Uplift KW - Pleistocene KW - Sumba Island KW - Indonesia Y1 - 2015 U6 - https://doi.org/10.1016/j.geomorph.2015.03.036 SN - 0169-555X SN - 1872-695X VL - 241 SP - 145 EP - 159 PB - Elsevier CY - Amsterdam ER -