TY - JOUR A1 - Weidle, Christian A1 - Wiesenberg, Lars A1 - El-Sharkawy, Amr A1 - Krüger, Frank A1 - Scharf, Andreas A1 - Agard, Philippe A1 - Meier, Thomas T1 - A 3-D crustal shear wave velocity model and Moho map below the Semail Ophiolite, eastern Arabia JF - Geophysical journal international N2 - The Semail Ophiolite in eastern Arabia is the largest and best-exposed slice of oceanic lithosphere on land. Detailed knowledge of the tectonic evolution of the shallow crust, in particular during and after ophiolite obduction in Late Cretaceous times is contrasted by few constraints on physical and compositional properties of the middle and lower continental crust below the obducted units. The role of inherited, pre-obduction crustal architecture remains therefore unaccounted for in our understanding of crustal evolution and the present-day geology. Based on seismological data acquired during a 27-month campaign in northern Oman, Ambient Seismic Noise Tomography and Receiver Function analysis provide for the first time a 3-D radially anisotropic shear wave velocity (V-S) model and a consistent Moho map below the iconic Semail Ophiolite. The model highlights deep crustal boundaries that segment the eastern Arabian basement in two distinct units. The previously undescribed Western Jabal Akhdar Zone separates Arabian crust with typical continental properties and a thickness of similar to 40-45 km in the northwest from a compositionally different terrane in the southeast that is interpreted as a terrane accreted during the Pan-African orogeny in Neoproterozoic times. East of the Ibra Zone, another deep crustal boundary, crustal thickness decreases to 30-35 km and very high lower crustal V-S suggest large-scale mafic intrusions into, and possible underplating of the Arabian continental crust that occurred most likely during Permian breakup of Pangea. Mafic reworking is sharply bounded by the (upper crustal) Semail Gap Fault Zone, northwest of which no such high velocities are found in the crust. Topography of the Oman Mountains is supported by a mild crustal root and Moho depth below the highest topography, the Jabal Akhdar Dome, is similar to 42 km. Radial anisotropy is robustly resolved in the upper crust and aids in discriminating dipping allochthonous units from autochthonous sedimentary rocks that are indistinguishable by isotropic V-S alone. Lateral thickness variations of the ophiolite highlight the Haylayn Ophiolite Massif on the northern flank of Jabal Akhdar Dome and the Hawasina Window as the deepest reaching unit. Ophiolite thickness is similar to 10 km in the southern and northern massifs, and <= 5 km elsewhere. KW - Composition and structure of the continental crust KW - Asia KW - Body waves KW - Seismic anisotropy KW - Seismic tomography KW - Surface waves and free oscillations Y1 - 2022 U6 - https://doi.org/10.1093/gji/ggac223 SN - 0956-540X SN - 1365-246X VL - 231 IS - 2 SP - 817 EP - 834 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Endrun, Brigitte A1 - Lebedev, Sergei A1 - Meier, Thomas A1 - Tirel, Celine A1 - Friederich, Wolfgang T1 - Complex layered deformation within the Aegean crust and mantle revealed by seismic anisotropy JF - Nature geoscience N2 - Continental lithosphere can undergo pervasive internal deformation, often distributed over broad zones near plate boundaries. However, because of the paucity of observational constraints on three-dimensional movement at depth, patterns of flow within the lithosphere remain uncertain. Endmember models for lithospheric flow invoke deformation localized on faults or deep shear zones or, alternatively, diffuse, viscous-fluid-like flow. Here we determine seismic Rayleigh-wave anisotropy in the crust and mantle of the Aegean region, an archetypal example of continental deformation. Our data reveal a complex, depth-dependent flow pattern within the extending lithosphere. Beneath the northern Aegean Sea, fast shear wave propagation is in a North-South direction within the mantle lithosphere, parallel to the extensional component of the current strain rate field. In the south-central Aegean, where deformation is weak at present, anisotropic fabric in the lower crust runs parallel to the direction of palaeo-extension in the Miocene. The close match of orientations of regional-scale anisotropic fabric and the directions of extension during the last significant episodes of deformation implies that at least a large part of the extension in the Aegean has been taken up by distributed viscous flow in the lower crust and lithospheric mantle. Y1 - 2011 U6 - https://doi.org/10.1038/NGEO1065 SN - 1752-0894 VL - 4 IS - 3 SP - 203 EP - 207 PB - Nature Publ. Group CY - New York ER - TY - JOUR A1 - Roux, E. A1 - Moorkamp, Max A1 - Jones, Alan G. A1 - Bischoff, Monika A1 - Endrun, Brigitte A1 - Lebedev, Sergei A1 - Meier, Thomas T1 - Joint inversion of long-period magnetotelluric data and surface-wave dispersion curves for anisotropic structure application to data from Central Germany JF - Geophysical research letters N2 - Geophysical datasets sensitive to different physical parameters can be used to improve resolution of Earth's internal structure. Herein, we jointly invert long-period magnetotelluric (MT) data and surface-wave dispersion curves. Our approach is based on a joint inversion using a genetic algorithm for a one-dimensional (1-D) isotropic structure, which we extend to 1-D anisotropic media. We apply our new anisotropic joint inversion to datasets from Central Germany demonstrating the capacity of our joint inversion algorithm to establish a 1-D anisotropic model that fits MT and seismic datasets simultaneously and providing new information regarding the deep structure in Central Germany. The lithosphere/asthenosphere boundary is found at approx. 84 km depth and two main anisotropic layers with coincident most conductive/seismic fast-axis direction are resolved at lower crustal and asthenospheric depths. We also quantify the amount of seismic and electrical anisotropy in the asthenosphere showing an emerging agreement between the two anisotropic coefficients. Y1 - 2011 U6 - https://doi.org/10.1029/2010GL046358 SN - 0094-8276 VL - 38 IS - 3 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Sen, Ali Tolga A1 - Cesca, Simone A1 - Bischoff, Monika A1 - Meier, Thomas A1 - Dahm, Torsten T1 - Automated full moment tensor inversion of coal mining-induced seismicity JF - Geophysical journal international N2 - Seismicity induced by coal mining in the Ruhr region, Germany, has been monitored continuously over the last 25 yr. In 2006, a dense temporary network (HAMNET) was deployed to locally monitor seismicity induced by longwall mining close to the town of Hamm. Between 2006 July and 2007 July, more than 7000 events with magnitudes M-L from -1.7 to 2.0 were detected. The spatiotemporal distribution of seismicity shows high correlation with the mining activity. In order to monitor rupture processes, we set up an automated source inversion routine and successfully perform double couple and full moment tensor (MT) inversions for more than 1000 events with magnitudes above M-L -0.5. The source inversion is based on a full waveform approach, both in the frequency and in the time domain, providing information about the centroid location, focal mechanism, scalar moment and full MT. Inversion results indicate a strong dominance of normal faulting focal mechanisms, with a steeper plane and a subhorizontal one. Fault planes are oriented parallel to the mining stopes. We classify the focal mechanisms based on their orientation and observe different frequency-magnitude distributions for families of events with different focal mechanisms; the overall frequency-magnitude distribution is not fitting the Gutenberg-Richter relation. Full MTs indicate that non-negligible opening tensile components accompanied normal faulting source mechanisms. Finally, extended source models are investigated for largest events. Results suggest that the rupture processes mostly occurred along the subvertical planes. KW - Geomechanics KW - Fracture and flow KW - Earthquake source observations KW - Seismicity and tectonics Y1 - 2013 U6 - https://doi.org/10.1093/gji/ggt300 SN - 0956-540X SN - 1365-246X VL - 195 IS - 2 SP - 1267 EP - 1281 PB - Oxford Univ. Press CY - Oxford ER -