TY - JOUR A1 - Kuhnla, A. A1 - Reinthaler, Markus A1 - Braune, Steffen A1 - Maier, A. A1 - Pindur, Gerhard A1 - Lendlein, Andreas A1 - Jung, Friedrich T1 - Spontaneous and induced platelet aggregation in apparently healthy subjects in relation to age JF - Clinical hemorheology and microcirculation : blood flow and vessels N2 - Thrombotic disorders remain the leading cause of mortality and morbidity, despite the fact that anti-platelet therapies and vascular implants are successfully used today. As life expectancy is increasing in western societies, the specific knowledge about processes leading to thrombosis in elderly is essential for an adequate therapeutic management of platelet dysfunction and for tailoring blood contacting implants. This study addresses the limited available data on platelet function in apparently healthy subjects in relation to age, particularly in view of subjects of old age (80-98 years). Apparently healthy subjects between 20 and 98 years were included in this study. Platelet function was assessed by light transmission aggregometry and comprised experiments on spontaneous as well as ristocetin-, ADP- and collagen-induced platelet aggregation. The data of this study revealed a non-linear increase in the maximum spontaneous platelet aggregation (from 3.3% +/- 3.3% to 10.9% +/- 5.9%). The maximum induced aggregation decreased with age for ristocetin (from 85.8% +/- 7.2% to 75.0% +/- 7.8%), ADP (from 88.5% +/- 4.6% to 64.8% +/- 7.3%) and collagen (from 89.5% +/- 3.0% to 64.0% +/- 4.0%) in a non-linear manner (linear regression analysis). These observations indicate that during aging, circulating platelets become increasingly activated but lose their full aggregatory potential, a phenomenon that was earlier termed "platelet exhaustion". In this study we extended the limited existing data for spontaneous and induced platelet aggregation of apparently healthy donors above the age of 75 years. The presented data indicate that the extrapolation of data from a middle age group does not necessarily predict platelet function in apparently healthy subjects of old age. It emphasizes the need for respective studies to improve our understanding of thrombotic processes in elderly humans. Y1 - 2019 U6 - https://doi.org/10.3233/CH-199006 SN - 1386-0291 SN - 1875-8622 VL - 71 IS - 4 SP - 425 EP - 435 PB - IOS Press CY - Amsterdam ER - TY - JOUR A1 - Arridge, Christopher S. A1 - Achilleos, N. A1 - Agarwal, Jessica A1 - Agnor, C. B. A1 - Ambrosi, R. A1 - Andre, N. A1 - Badman, S. V. A1 - Baines, K. A1 - Banfield, D. A1 - Barthelemy, M. A1 - Bisi, M. M. A1 - Blum, J. A1 - Bocanegra-Bahamon, T. A1 - Bonfond, B. A1 - Bracken, C. A1 - Brandt, P. A1 - Briand, C. A1 - Briois, C. A1 - Brooks, S. A1 - Castillo-Rogez, J. A1 - Cavalie, T. A1 - Christophe, B. A1 - Coates, Andrew J. A1 - Collinson, G. A1 - Cooper, J. F. A1 - Costa-Sitja, M. A1 - Courtin, R. A1 - Daglis, I. A. A1 - De Pater, Imke A1 - Desai, M. A1 - Dirkx, D. A1 - Dougherty, M. K. A1 - Ebert, R. W. A1 - Filacchione, Gianrico A1 - Fletcher, Leigh N. A1 - Fortney, J. A1 - Gerth, I. A1 - Grassi, D. A1 - Grodent, D. A1 - Grün, Eberhard A1 - Gustin, J. A1 - Hedman, M. A1 - Helled, R. A1 - Henri, P. A1 - Hess, Sebastien A1 - Hillier, J. K. A1 - Hofstadter, M. H. A1 - Holme, R. A1 - Horanyi, M. A1 - Hospodarsky, George B. A1 - Hsu, S. A1 - Irwin, P. A1 - Jackman, C. M. A1 - Karatekin, O. A1 - Kempf, Sascha A1 - Khalisi, E. A1 - Konstantinidis, K. A1 - Kruger, H. A1 - Kurth, William S. A1 - Labrianidis, C. A1 - Lainey, V. A1 - Lamy, L. L. A1 - Laneuville, Matthieu A1 - Lucchesi, D. A1 - Luntzer, A. A1 - MacArthur, J. A1 - Maier, A. A1 - Masters, A. A1 - McKenna-Lawlor, S. A1 - Melin, H. A1 - Milillo, A. A1 - Moragas-Klostermeyer, Georg A1 - Morschhauser, Achim A1 - Moses, J. I. A1 - Mousis, O. A1 - Nettelmann, N. A1 - Neubauer, F. M. A1 - Nordheim, T. A1 - Noyelles, B. A1 - Orton, G. S. A1 - Owens, Mathew A1 - Peron, R. A1 - Plainaki, C. A1 - Postberg, F. A1 - Rambaux, N. A1 - Retherford, K. A1 - Reynaud, Serge A1 - Roussos, E. A1 - Russell, C. T. A1 - Rymer, Am. A1 - Sallantin, R. A1 - Sanchez-Lavega, A. A1 - Santolik, O. A1 - Saur, J. A1 - Sayanagi, Km. A1 - Schenk, P. A1 - Schubert, J. A1 - Sergis, N. A1 - Sittler, E. C. A1 - Smith, A. A1 - Spahn, Frank A1 - Srama, Ralf A1 - Stallard, T. A1 - Sterken, V. A1 - Sternovsky, Zoltan A1 - Tiscareno, M. A1 - Tobie, G. A1 - Tosi, F. A1 - Trieloff, M. A1 - Turrini, D. A1 - Turtle, E. P. A1 - Vinatier, S. A1 - Wilson, R. A1 - Zarkat, P. T1 - The science case for an orbital mission to Uranus: Exploring the origins and evolution of ice giant planets JF - Planetary and space science N2 - Giant planets helped to shape the conditions we see in the Solar System today and they account for more than 99% of the mass of the Sun's planetary system. They can be subdivided into the Ice Giants (Uranus and Neptune) and the Gas Giants (Jupiter and Saturn), which differ from each other in a number of fundamental ways. Uranus, in particular is the most challenging to our understanding of planetary formation and evolution, with its large obliquity, low self-luminosity, highly asymmetrical internal field, and puzzling internal structure. Uranus also has a rich planetary system consisting of a system of inner natural satellites and complex ring system, five major natural icy satellites, a system of irregular moons with varied dynamical histories, and a highly asymmetrical magnetosphere. Voyager 2 is the only spacecraft to have explored Uranus, with a flyby in 1986, and no mission is currently planned to this enigmatic system. However, a mission to the uranian system would open a new window on the origin and evolution of the Solar System and would provide crucial information on a wide variety of physicochemical processes in our Solar System. These have clear implications for understanding exoplanetary systems. In this paper we describe the science case for an orbital mission to Uranus with an atmospheric entry probe to sample the composition and atmospheric physics in Uranus' atmosphere. The characteristics of such an orbiter and a strawman scientific payload are described and we discuss the technical challenges for such a mission. This paper is based on a white paper submitted to the European Space Agency's call for science themes for its large-class mission programme in 2013. KW - Uranus KW - Magnetosphere KW - Atmosphere KW - Natural satellites KW - Rings KW - Planetary interior Y1 - 2014 U6 - https://doi.org/10.1016/j.pss.2014.08.009 SN - 0032-0633 VL - 104 SP - 122 EP - 140 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Maier, A. A1 - Lange, Sabine A1 - Horacek, U. A1 - Weinrich, D. A1 - Esser, Günter T1 - Psychische Störungen und Entwicklungsauffälligkeiten früher erkennen mit neuem Kita- Vorsorgebogen Y1 - 2007 ER -