TY - JOUR A1 - Weimar, Jannis A1 - Köhli, Markus A1 - Budach, Christian A1 - Schmidt, Ulrich T1 - Large-scale boron-lined neutron detection systems as a 3He alternative for Cosmic Ray Neutron Sensing JF - Frontiers in water N2 - Cosmic-Ray neutron sensors are widely used to determine soil moisture on the hectare scale. Precise measurements, especially in the case of mobile application, demand for neutron detectors with high counting rates and high signal-to-noise ratios. For a long time Cosmic Ray Neutron Sensing (CRNS) instruments have relied on He-3 as an efficient neutron converter. Its ongoing scarcity demands for technological solutions using alternative converters, which are Li-6 and B-10. Recent developments lead to a modular neutron detector consisting of several B-10-lined proportional counter tubes, which feature high counting rates via its large surface area. The modularity allows for individual shieldings of different segments within the detector featuring the capability of gaining spectral information about the detected neutrons. This opens the possibility for active signal correction, especially useful when applied to mobile measurements, where the influence of constantly changing near-field to the overall signal should be corrected. Furthermore, the signal-to-noise ratio could be increased by combining pulse height and pulse length spectra to discriminate between neutrons and other environmental radiation. This novel detector therefore combines high-selective counting electronics with large-scale instrumentation technology. KW - CRNS KW - neutron KW - detector KW - soil moisture KW - readout electronics KW - boron-10 KW - helium-3 alternative Y1 - 2020 U6 - https://doi.org/10.3389/frwa.2020.00016 SN - 2624-9375 VL - 2 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Francke, Till A1 - Heistermann, Maik A1 - Köhli, Markus A1 - Budach, Christian A1 - Schrön, Martin A1 - Oswald, Sascha T1 - Assessing the feasibility of a directional cosmic-ray neutron sensing sensor for estimating soil moisture JF - Geoscientific Instrumentation, Methods and Data Systems N2 - Cosmic-ray neutron sensing (CRNS) is a non-invasive tool for measuring hydrogen pools such as soil moisture, snow or vegetation. The intrinsic integration over a radial hectare-scale footprint is a clear advantage for averaging out small-scale heterogeneity, but on the other hand the data may become hard to interpret in complex terrain with patchy land use. This study presents a directional shielding approach to prevent neutrons from certain angles from being counted while counting neutrons entering the detector from other angles and explores its potential to gain a sharper horizontal view on the surrounding soil moisture distribution. Using the Monte Carlo code URANOS (Ultra Rapid Neutron-Only Simulation), we modelled the effect of additional polyethylene shields on the horizontal field of view and assessed its impact on the epithermal count rate, propagated uncertainties and aggregation time. The results demonstrate that directional CRNS measurements are strongly dominated by isotropic neutron transport, which dilutes the signal of the targeted direction especially from the far field. For typical count rates of customary CRNS stations, directional shielding of half-spaces could not lead to acceptable precision at a daily time resolution. However, the mere statistical distinction of two rates should be feasible. KW - water-balance KW - quantification KW - calibration KW - validation Y1 - 2021 U6 - https://doi.org/10.5194/gi-11-75-2022 SN - 2193-0864 SN - 2193-0856 VL - 11 SP - 75 EP - 92 PB - Copernicus Publ. CY - Göttingen ER - TY - JOUR A1 - Schrön, Martin A1 - Zacharias, Steffen A1 - Womack, Gary A1 - Köhli, Markus A1 - Desilets, Darin A1 - Oswald, Sascha A1 - Bumberger, Jan A1 - Mollenhauer, Hannes A1 - Kögler, Simon A1 - Remmler, Paul A1 - Kasner, Mandy A1 - Denk, Astrid A1 - Dietrich, Peter T1 - Intercomparison of cosmic-ray neutron sensors and water balance monitoring in an urban environment JF - Geoscientific instrumentation, methods and data systems N2 - Sensor-to-sensor variability is a source of error common to all geoscientific instruments that needs to be assessed before comparative and applied research can be performed with multiple sensors. Consistency among sensor systems is especially critical when subtle features of the surrounding terrain are to be identified. Cosmic-ray neutron sensors (CRNSs) are a recent technology used to monitor hectometre-scale environmental water storages, for which a rigorous comparison study of numerous co-located sensors has not yet been performed. In this work, nine stationary CRNS probes of type "CRS1000" were installed in relative proximity on a grass patch surrounded by trees, buildings, and sealed areas. While the dynamics of the neutron count rates were found to be similar, offsets of a few percent from the absolute average neutron count rates were found. Technical adjustments of the individual detection parameters brought all instruments into good agreement. Furthermore, we found a critical integration time of 6 h above which all sensors showed consistent dynamics in the data and their RMSE fell below 1% of gravimetric water content. The residual differences between the nine signals indicated local effects of the complex urban terrain on the scale of several metres. Mobile CRNS measurements and spatial simulations with the URANOS neutron transport code in the surrounding area (25 ha) have revealed substantial sub-footprint heterogeneity to which CRNS detectors are sensitive despite their large averaging volume. The sealed and constantly dry structures in the footprint furthermore damped the dynamics of the CRNS-derived soil moisture. We developed strategies to correct for the sealed-area effect based on theoretical insights about the spatial sensitivity of the sensor. This procedure not only led to reliable soil moisture estimation during dry-out periods, it further revealed a strong signal of intercepted water that emerged over the sealed surfaces during rain events. The presented arrangement offered a unique opportunity to demonstrate the CRNS performance in complex terrain, and the results indicated great potential for further applications in urban climate research. Y1 - 2018 U6 - https://doi.org/10.5194/gi-7-83-2018 SN - 2193-0856 SN - 2193-0864 VL - 7 IS - 1 SP - 83 EP - 99 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Schrön, Martin A1 - Rosolem, Rafael A1 - Köhli, Markus A1 - Piussi, L. A1 - Schröter, I. A1 - Iwema, J. A1 - Kögler, S. A1 - Oswald, Sascha A1 - Wollschläger, U. A1 - Samaniego, Luis A1 - Dietrich, Peter A1 - Zacharias, Steffen T1 - Cosmic-ray Neutron Rover Surveys of Field Soil Moisture and the Influence of Roads JF - Water resources research N2 - Measurements of root-zone soil moisture across spatial scales of tens to thousands of meters have been a challenge for many decades. The mobile application of Cosmic Ray Neutron Sensing (CRNS) is a promising approach to measure field soil moisture noninvasively by surveying large regions with a ground-based vehicle. Recently, concerns have been raised about a potentially biasing influence of local structures and roads. We employed neutron transport simulations and dedicated experiments to quantify the influence of different road types on the CRNS measurement. We found that roads introduce a substantial bias in the CRNS estimation of field soil moisture compared to off-road scenarios. However, this effect becomes insignificant at distances beyond a few meters from the road. Neutron measurements on the road could overestimate the field value by up to 40 % depending on road material, width, and the surrounding field water content. The bias could be largely removed with an analytical correction function that accounts for these parameters. Additionally, an empirical approach is proposed that can be used without prior knowledge of field soil moisture. Tests at different study sites demonstrated good agreement between road-effect corrected measurements and field soil moisture observations. However, if knowledge about the road characteristics is missing, measurements on the road could substantially reduce the accuracy of this method. Our results constitute a practical advancement of the mobile CRNS methodology, which is important for providing unbiased estimates of field-scale soil moisture to support applications in hydrology, remote sensing, and agriculture. Plain Language Summary Measurements of root-zone soil moisture across spatial scales of tens to thousands of meters have been a challenge for many decades. The mobile application of Cosmic Ray Neutron Sensing (CRNS) is a promising approach to measure field soil moisture noninvasively by surveying large regions with a ground-based vehicle. Recently, concerns have been raised about a potentially biasing influence of roads. We employed physics simulations and dedicated experiments to quantify the influence of different road types on the CRNS measurement. We found that the presence of roads biased the CRNS estimation of field soil moisture compared to nonroad scenarios. Neutron measurements could overestimate the field value by up to 40 % depending on road material, width, surrounding field water content, and distance from the road. We proposed a correction function that successfully removed this bias and works even without prior knowledge of field soil moisture. Tests at different study sites demonstrated good agreement between corrected measurements and other field soil moisture observations. Our results constitute a practical advancement of the mobile CRNS methodology, which is important for providing unbiased estimates of field-scale soil moisture to support applications in hydrology, remote sensing, and agriculture. KW - road effect KW - field-scale KW - soil moisture KW - cosmic ray neutrons KW - mobile survey KW - COSMOS rover Y1 - 2018 U6 - https://doi.org/10.1029/2017WR021719 SN - 0043-1397 SN - 1944-7973 VL - 54 IS - 9 SP - 6441 EP - 6459 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Schattan, Paul A1 - Köhli, Markus A1 - Schrön, Martin A1 - Baroni, Gabriele A1 - Oswald, Sascha T1 - Sensing area-average snow water equivalent with cosmic-ray neutrons: the influence of fractional snow cover JF - Water resources research N2 - Cosmic-ray neutron sensing (CRNS) is a promising non-invasive technique to estimate snow water equivalent (SWE) over large areas. In contrast to preliminary studies focusing on shallow snow conditions (SWE <130 mm), more recently the method was shown experimentally to be sensitive also to deeper snowpacks providing the basis for its use at mountain experimental sites. However, hysteretic neutron response has been observed for complex snow cover including patchy snow-free areas. In the present study we aimed to understand and support the experimental findings using a comprehensive neutron modeling approach. Several simulations have been set up in order to disentangle the effect on the signal of different land surface characteristics and to reproduce multiple observations during periods of snow melt and accumulation. To represent the actual land surface heterogeneity and the complex snow cover, the model used data from terrestrial laser scanning. The results show that the model was able to accurately reproduce the CRNS signal and particularly the hysteresis effect during accumulation and melting periods. Moreover, the sensor footprint was found to be anisotropic and affected by the spatial distribution of liquid water and snow as well as by the topography of the nearby mountains. Under fully snow-covered conditions the CRNS is able to accurately estimate SWE without prior knowledge about snow density profiles or other spatial anomalies. These results provide new insights into the characteristics of the detected neutron signal in complex terrain and support the use of CRNS for long-term snow monitoring in high elevated mountain environments. KW - area-average snow monitoring KW - cosmic-ray neutron sensing KW - neutron simulations KW - spatial heterogeneity KW - fractional snow cover Y1 - 2019 U6 - https://doi.org/10.1029/2019WR025647 SN - 0043-1397 SN - 1944-7973 VL - 55 IS - 12 SP - 10796 EP - 10812 PB - American Geophysical Union CY - Washington ER -