TY - JOUR A1 - Ramos, Antonio M. T. A1 - Builes-Jaramillo, Alejandro A1 - Poveda, German A1 - Goswami, Bedartha A1 - Macau, Elbert E. N. A1 - Kurths, Jürgen A1 - Marwan, Norbert T1 - Recurrence measure of conditional dependence and applications JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Identifying causal relations from observational data sets has posed great challenges in data-driven causality inference studies. One of the successful approaches to detect direct coupling in the information theory framework is transfer entropy. However, the core of entropy-based tools lies on the probability estimation of the underlying variables. Herewe propose a data-driven approach for causality inference that incorporates recurrence plot features into the framework of information theory. We define it as the recurrence measure of conditional dependence (RMCD), and we present some applications. The RMCD quantifies the causal dependence between two processes based on joint recurrence patterns between the past of the possible driver and present of the potentially driven, excepting the contribution of the contemporaneous past of the driven variable. Finally, it can unveil the time scale of the influence of the sea-surface temperature of the Pacific Ocean on the precipitation in the Amazonia during recent major droughts. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevE.95.052206 SN - 2470-0045 SN - 2470-0053 VL - 95 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Goswami, Bedartha A1 - Boers, Niklas A1 - Rheinwalt, Aljoscha A1 - Marwan, Norbert A1 - Heitzig, Jobst A1 - Breitenbach, Sebastian Franz Martin A1 - Kurths, Jürgen T1 - Abrupt transitions in time series with uncertainties JF - Nature Communications N2 - Identifying abrupt transitions is a key question in various disciplines. Existing transition detection methods, however, do not rigorously account for time series uncertainties, often neglecting them altogether or assuming them to be independent and qualitatively similar. Here, we introduce a novel approach suited to handle uncertainties by representing the time series as a time-ordered sequence of probability density functions. We show how to detect abrupt transitions in such a sequence using the community structure of networks representing probabilities of recurrence. Using our approach, we detect transitions in global stock indices related to well-known periods of politico-economic volatility. We further uncover transitions in the El Niño-Southern Oscillation which coincide with periods of phase locking with the Pacific Decadal Oscillation. Finally, we provide for the first time an ‘uncertainty-aware’ framework which validates the hypothesis that ice-rafting events in the North Atlantic during the Holocene were synchronous with a weakened Asian summer monsoon. Y1 - 2018 U6 - https://doi.org/10.1038/s41467-017-02456-6 SN - 2041-1723 VL - 9 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Boers, Niklas A1 - Goswami, Bedartha A1 - Rheinwalt, Aljoscha A1 - Bookhagen, Bodo A1 - Hoskins, Brian A1 - Kurths, Jürgen T1 - Complex networks reveal global pattern of extreme-rainfall teleconnections JF - Nature : the international weekly journal of science N2 - Climatic observables are often correlated across long spatial distances, and extreme events, such as heatwaves or floods, are typically assumed to be related to such teleconnections(1,2). Revealing atmospheric teleconnection patterns and understanding their underlying mechanisms is of great importance for weather forecasting in general and extreme-event prediction in particular(3,4), especially considering that the characteristics of extreme events have been suggested to change under ongoing anthropogenic climate change(5-8). Here we reveal the global coupling pattern of extreme-rainfall events by applying complex-network methodology to high-resolution satellite data and introducing a technique that corrects for multiple-comparison bias in functional networks. We find that the distance distribution of significant connections (P < 0.005) around the globe decays according to a power law up to distances of about 2,500 kilometres. For longer distances, the probability of significant connections is much higher than expected from the scaling of the power law. We attribute the shorter, power-law-distributed connections to regional weather systems. The longer, super-power-law-distributed connections form a global rainfall teleconnection pattern that is probably controlled by upper-level Rossby waves. We show that extreme-rainfall events in the monsoon systems of south-central Asia, east Asia and Africa are significantly synchronized. Moreover, we uncover concise links between south-central Asia and the European and North American extratropics, as well as the Southern Hemisphere extratropics. Analysis of the atmospheric conditions that lead to these teleconnections confirms Rossby waves as the physical mechanism underlying these global teleconnection patterns and emphasizes their crucial role in dynamical tropical-extratropical couplings. Our results provide insights into the function of Rossby waves in creating stable, global-scale dependencies of extreme-rainfall events, and into the potential predictability of associated natural hazards. Y1 - 2019 U6 - https://doi.org/10.1038/s41586-018-0872-x SN - 0028-0836 SN - 1476-4687 VL - 566 IS - 7744 SP - 373 EP - 377 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Rheinwahlt, Aljoscha A1 - Goswami, Bedartha A1 - Bookhagen, Bodo T1 - A network-based flow accumulation algorithm for point clouds BT - Facet-Flow Networks (FFNs) JF - Journal of geophysical research : Earth surface N2 - Flow accumulation algorithms estimate the steady state of flow on real or modeled topographic surfaces and are crucial for hydrological and geomorphological assessments, including delineation of river networks, drainage basins, and sediment transport processes. Existing flow accumulation algorithms are typically designed to compute flows on regular grids and are not directly applicable to arbitrarily sampled topographic data such as lidar point clouds. In this study we present a random sampling scheme that generates homogeneous point densities, in combination with a novel flow path tracing approach-the Facet-Flow Network (FFN)-that estimates flow accumulation in terms of specific catchment area (SCA) on triangulated surfaces. The random sampling minimizes biases due to spatial sampling and the FFN allows for direct flow estimation from point clouds. We validate our approach on a Gaussian hill surface and study the convergence of its SCA compared to the analytical solution. Here, our algorithm outperforms the multiple flow direction algorithm, which is optimized for divergent surfaces. We also compute the SCA of a 6-km(2)-steep, vegetated catchment on Santa Cruz Island, California, based on airborne lidar point-cloud data. Point-cloud-based SCA values estimated by our method compare well with those estimated by the D-infinity or multiple flow direction algorithm on gridded data. The advantage of computing SCA from point clouds becomes relevant especially for divergent topography and for small drainage areas: These are depicted with much more detail due to the higher sampling density of point clouds. KW - point clouds KW - drainage networks KW - lidar KW - tin KW - surface runoff KW - spatial sampling Y1 - 2019 U6 - https://doi.org/10.1029/2018JF004827 SN - 2169-9003 SN - 2169-9011 VL - 124 IS - 7 SP - 2013 EP - 2033 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Lechleitner, Franziska A. A1 - Breitenbach, Sebastian Franz Martin A1 - Rehfeld, Kira A1 - Ridley, Harriet E. A1 - Asmerom, Yemane A1 - Prufer, Keith M. A1 - Marwan, Norbert A1 - Goswami, Bedartha A1 - Kennett, Douglas J. A1 - Aquino, Valorie V. A1 - Polyak, Victor A1 - Haug, Gerald H. A1 - Eglinton, Timothy I. A1 - Baldini, James U. L. T1 - Tropical rainfall over the last two millennia: evidence for a low-latitude hydrologic seesaw JF - Scientific reports N2 - The presence of a low-to mid-latitude interhemispheric hydrologic seesaw is apparent over orbital and glacial-interglacial timescales, but its existence over the most recent past remains unclear. Here we investigate, based on climate proxy reconstructions from both hemispheres, the inter-hemispherical phasing of the Intertropical Convergence Zone (ITCZ) and the low-to mid-latitude teleconnections in the Northern Hemisphere over the past 2000 years. A clear feature is a persistent southward shift of the ITCZ during the Little Ice Age until the beginning of the 19th Century. Strong covariation between our new composite ITCZ-stack and North Atlantic Oscillation (NAO) records reveals a tight coupling between these two synoptic weather and climate phenomena over decadal-to-centennial timescales. This relationship becomes most apparent when comparing two precisely dated, high-resolution paleorainfall records from Belize and Scotland, indicating that the low-to mid-latitude teleconnection was also active over annual-decadal timescales. It is likely a combination of external forcing, i.e., solar and volcanic, and internal feedbacks, that drives the synchronous ITCZ and NAO shifts via energy flux perturbations in the tropics. Y1 - 2017 U6 - https://doi.org/10.1038/srep45809 SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Boers, Niklas A1 - Goswami, Bedartha A1 - Ghil, Michael T1 - A complete representation of uncertainties in layer-counted paleoclimatic archives JF - Climate of the past : an interactive open access journal of the European Geosciences Union N2 - Accurate time series representation of paleoclimatic proxy records is challenging because such records involve dating errors in addition to proxy measurement errors. Rigorous attention is rarely given to age uncertainties in paleoclimatic research, although the latter can severely bias the results of proxy record analysis. Here, we introduce a Bayesian approach to represent layer-counted proxy records - such as ice cores, sediments, corals, or tree rings - as sequences of probability distributions on absolute, error-free time axes. The method accounts for both proxy measurement errors and uncertainties arising from layer-counting-based dating of the records. An application to oxygen isotope ratios from the North Greenland Ice Core Project (NGRIP) record reveals that the counting errors, although seemingly small, lead to substantial uncertainties in the final representation of the oxygen isotope ratios. In particular, for the older parts of the NGRIP record, our results show that the total uncertainty originating from dating errors has been seriously underestimated. Our method is next applied to deriving the overall uncertainties of the Suigetsu radiocarbon comparison curve, which was recently obtained from varved sediment cores at Lake Suigetsu, Japan. This curve provides the only terrestrial radiocarbon comparison for the time interval 12.5-52.8 kyr BP. The uncertainties derived here can be readily employed to obtain complete error estimates for arbitrary radiometrically dated proxy records of this recent part of the last glacial interval. Y1 - 2017 U6 - https://doi.org/10.5194/cp-13-1169-2017 SN - 1814-9324 SN - 1814-9332 VL - 13 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Lechleitner, Franziska A. A1 - Breitenbach, Sebastian Franz Martin A1 - Cheng, Hai A1 - Plessen, Birgit A1 - Rehfeld, Kira A1 - Goswami, Bedartha A1 - Marwan, Norbert A1 - Eroglu, Deniz A1 - Adkins, Jess F. A1 - Haug, Gerald T1 - Climatic and in-cave influences on delta O-18 and delta C-13 in a stalagmite from northeastern India through the last deglaciation JF - Quaternary research : an interdisciplinary journal N2 - Northeastern (NE) India experiences extraordinarily pronounced seasonal climate, governed by the Indian summer monsoon (ISM). The vulnerability of this region to floods and droughts calls for detailed and highly resolved paleoclimate reconstructions to assess the recurrence rate and driving factors of ISM changes. We use stable oxygen and carbon isotope ratios (delta O-18 and delta C-13) from stalagmite MAW-6 from Mawmluh Cave to infer climate and environmental conditions in NE India over the last deglaciation (16-6ka). We interpret stalagmite delta O-18 as reflecting ISM strength, whereas delta C-13 appears to be driven by local hydroclimate conditions. Pronounced shifts in ISM strength over the deglaciation are apparent from the delta O-18 record, similarly to other records from monsoonal Asia. The ISM is weaker during the late glacial (LG) period and the Younger Dryas, and stronger during the BOlling-Allerod and Holocene. Local conditions inferred from the delta C-13 record appear to have changed less substantially over time, possibly related to the masking effect of changing precipitation seasonality. Time series analysis of the delta O-18 record reveals more chaotic conditions during the late glacial and higher predictability during the Holocene, likely related to the strengthening of the seasonal recurrence of the ISM with the onset of the Holocene. KW - Indian Summer Monsoon KW - stalagmite KW - oxygen isotopes KW - carbon isotopes KW - deglaciation Y1 - 2017 U6 - https://doi.org/10.1017/qua.2017.72 SN - 0033-5894 SN - 1096-0287 VL - 88 SP - 458 EP - 471 PB - Cambridge Univ. Press CY - New York ER - TY - JOUR A1 - Traxl, Dominik A1 - Boers, Niklas A1 - Rheinwalt, Aljoscha A1 - Goswami, Bedartha A1 - Kurths, Jürgen T1 - The size distribution of spatiotemporal extreme rainfall clusters around the globe JF - Geophysical research letters N2 - The scaling behavior of rainfall has been extensively studied both in terms of event magnitudes and in terms of spatial extents of the events. Different heavy-tailed distributions have been proposed as candidates for both instances, but statistically rigorous treatments are rare. Here we combine the domains of event magnitudes and event area sizes by a spatiotemporal integration of 3-hourly rain rates corresponding to extreme events derived from the quasi-global high-resolution rainfall product Tropical Rainfall Measuring Mission 3B42. A maximum likelihood evaluation reveals that the distribution of spatiotemporally integrated extreme rainfall cluster sizes over the oceans is best described by a truncated power law, calling into question previous statements about scale-free distributions. The observed subpower law behavior of the distribution's tail is evaluated with a simple generative model, which indicates that the exponential truncation of an otherwise scale-free spatiotemporal cluster size distribution over the oceans could be explained by the existence of land masses on the globe. Y1 - 2016 U6 - https://doi.org/10.1002/2016GL070692 SN - 0094-8276 SN - 1944-8007 VL - 43 SP - 9939 EP - 9947 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Lechleitner, Franziska A. A1 - Baldini, James U. L. A1 - Breitenbach, Sebastian Franz Martin A1 - Fohlmeister, Jens Bernd A1 - McIntyre, Cameron A1 - Goswami, Bedartha A1 - Jamieson, Robert A. A1 - van der Voort, Tessa S. A1 - Prufer, Keith A1 - Marwan, Norbert A1 - Culleton, Brendan J. A1 - Kennett, Douglas J. A1 - Asmerom, Yemane A1 - Polyak, Victor A1 - Eglinton, Timothy I. T1 - Hydrological and climatological controls on radiocarbon concentrations in a tropical stalagmite JF - Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society N2 - Precisely-dated stalagmites are increasingly important archives for the reconstruction of terrestrial paleoclimate at very high temporal resolution. In-depth understanding of local conditions at the cave site and of the processes driving stalagmite deposition is of paramount importance for interpreting proxy signals incorporated in stalagmite carbonate. Here we present a sub-decadally resolved dead carbon fraction (DCF) record for a stalagmite from Yok Balum Cave (southern Belize). The record is coupled to parallel stable carbon isotope (delta C-13) and U/Ca measurements, as well as radiocarbon (C-14) measurements from soils overlying the cave system. Using a karst carbon cycle model we disentangle the importance of soil and karst processes on stalagmite DCF incorporation, revealing a dominant host rock dissolution control on total DCF. Covariation between DCF, delta C-13, and U/Ca indicates that karst processes are a common driver of all three parameters, suggesting possible use of delta C-13 and trace element ratios to independently quantify DCF variability. A statistically significant multi-decadal lag of variable length exists between DCF and reconstructed solar activity, suggesting that solar activity influenced regional precipitation in Mesoamerica over the past 1500 years, but that the relationship was non-static. Although the precise nature of the observed lag is unclear, solar-induced changes in North Atlantic oceanic and atmospheric dynamics may play a role. (C) 2016 Elsevier Ltd. All rights reserved. KW - Stalagmite KW - Tropics KW - Radiocarbon KW - Trace elements KW - Hydroclimate Y1 - 2016 U6 - https://doi.org/10.1016/j.gca.2016.08.039 SN - 0016-7037 SN - 1872-9533 VL - 194 SP - 233 EP - 252 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Goswami, Bedartha A1 - Shekatkar, Snehal M. A1 - Rheinwalt, Aljoscha A1 - Ambika, G. A1 - Kurths, Jürgen T1 - A random interacting network model for complex networks JF - Scientific reports N2 - We propose a RAndom Interacting Network (RAIN) model to study the interactions between a pair of complex networks. The model involves two major steps: (i) the selection of a pair of nodes, one from each network, based on intra-network node-based characteristics, and (ii) the placement of a link between selected nodes based on the similarity of their relative importance in their respective networks. Node selection is based on a selection fitness function and node linkage is based on a linkage probability defined on the linkage scores of nodes. The model allows us to relate within-network characteristics to between-network structure. We apply the model to the interaction between the USA and Schengen airline transportation networks (ATNs). Our results indicate that two mechanisms: degree-based preferential node selection and degree-assortative link placement are necessary to replicate the observed inter-network degree distributions as well as the observed inter-network assortativity. The RAIN model offers the possibility to test multiple hypotheses regarding the mechanisms underlying network interactions. It can also incorporate complex interaction topologies. Furthermore, the framework of the RAIN model is general and can be potentially adapted to various real-world complex systems. Y1 - 2015 U6 - https://doi.org/10.1038/srep18183 SN - 2045-2322 VL - 5 PB - Nature Publ. Group CY - London ER -