TY - JOUR A1 - Meiling, Till Thomas A1 - Cywinski, Piotr J. A1 - Löhmannsröben, Hans-Gerd T1 - Two-Photon excitation fluorescence spectroscopy of quantum dots BT - photophysical properties and application in bioassays JF - The journal of physical chemistry : C, Nanomaterials and interfaces N2 - The applications of quantum dots (QDs) in two-photon (2P) excitation applications demand reliable data about their 2P absorption (2PA) cross sections (sigma(2PA)). In the present study, sigma(2PA) values have been determined for a series of commercial colloidal CdSe/ZnS QDs and CdSeTe/ZnS QDs in aqueous media. For the first time for these QDs, the sigma(2PA) values have been determined over a wide spectral range, that is, between 720 and 900 nm, and are compared to the extinction coefficient (epsilon) values obtained under one-photon (1P) excitation. Furthermore, we present a QD in combination with an organic dye in a biotin-streptavidin Forster resonance energy transfer bioassay under 1P and 2P excitation. The results for the bioassay under 2P excitation are compared to those obtained under 1P excitation. The results demonstrate that in the case of the 2P excitation, higher sensitivity can be achieved because of an improved signal-to-noise ratio. Y1 - 2018 U6 - https://doi.org/10.1021/acs.jpcc.7b12345 SN - 1932-7447 SN - 1932-7455 VL - 122 IS - 17 SP - 9641 EP - 9647 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Cywinski, Piotr J. A1 - Pietraszkiewicz, Marek A1 - Maciejczyk, Michal A1 - Gorski, Krzysztof A1 - Hammann, Tommy A1 - Liermann, Konstanze A1 - Paulke, Bernd-Reiner A1 - Löhmannsröben, Hans-Gerd T1 - Total protein concentration quantification using nanobeads with a new highly luminescent terbium(III) complex JF - RSC Advances N2 - Total protein concentration (TPC) is a key parameter in many biochemical experiments and its quantification is often necessary for isolation, separation, and analysis of proteins. A sensitive and rapid nanobead-based TPC quantification assay based on Forster Resonance Energy Transfer (FRET) has been developed. A new, highly luminescent Tb(III) complex has been synthesised and applied as donor in this FRET assay with an organic dye (Cy5) as acceptor. FRET-induced changes in luminescence have been investigated both at donor and acceptor emission wavelength using time-resolved luminescence spectroscopy with time-gated detection. In the assay, the Tb(III) complex and fine-tuned polyglycidyl methacrylate (PGMA) nanobeads ensure that an improvement in sensitivity and background reduction is achieved. Using 40 nm large PGMA nanobeads loaded with the Tb(III) complex, it is possible to determine TPC down to 50 ng mL(-1) in just 10 minutes. Through specific assay components the sensitivity has been improved when compared to existing nanobead-based assays and to currently known commercial methods. Additionally, the assay is relatively insensitive to the presence of contaminants, such as non-ionic detergents commonly found in biological samples. Due to no need for any centrifugal steps, this mix-and-measure bioassay can easily be implemented into routine TPC quantification protocols in biochemical laboratories. Y1 - 2016 U6 - https://doi.org/10.1039/c6ra23207h SN - 2046-2069 VL - 6 SP - 115068 EP - 115073 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Meiling, Till T. A1 - Cywinski, Piotr J. A1 - Bald, Ilko T1 - White carbon: Fluorescent carbon nanoparticles with tunable quantum yield in a reproducible green synthesis JF - Scientific reports N2 - In this study, a new reliable, economic, and environmentally-friendly one-step synthesis is established to obtain carbon nanodots (CNDs) with well-defined and reproducible photoluminescence (PL) properties via the microwave-assisted hydrothermal treatment of starch and Tris-acetate-EDTA (TAE) buffer as carbon sources. Three kinds of CNDs are prepared using different sets of above mentioned starting materials. The as-synthesized CNDs: C-CND (starch only), N-CND 1 (starch in TAE) and N-CND 2 (TAE only) exhibit highly homogenous PL and are ready to use without need for further purification. The CNDs are stable over a long period of time (> 1 year) either in solution or as freeze-dried powder. Depending on starting material, CNDs with PL quantum yield (PLQY) ranging from less than 1% up to 28% are obtained. The influence of the precursor concentration, reaction time and type of additives on the optical properties (UV-Vis absorption, PL emission spectrum and PLQY) is carefully investigated, providing insight into the chemical processes that occur during CND formation. Remarkably, upon freeze-drying the initially brown CND-solution turns into a non-fluorescent white/slightly brown powder which recovers PL in aqueous solution and can potentially be applied as fluorescent marker in bio-imaging, as a reduction agent or as a photocatalyst. Y1 - 2016 U6 - https://doi.org/10.1038/srep28557 SN - 2045-2322 VL - 6 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Tasior, Mariusz A1 - Bald, Ilko A1 - Deperasinska, Irena A1 - Cywinski, Piotr J. A1 - Gryko, Daniel T. T1 - An internal charge transfer-dependent solvent effect in V-shaped azacyanines JF - Organic & biomolecular chemistry : an international journal of synthetic, physical and biomolecular organic chemistry Y1 - 2015 U6 - https://doi.org/10.1039/c5ob01633a SN - 1477-0520 SN - 1477-0539 VL - 13 IS - 48 SP - 11714 EP - 11720 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Olejko, Lydia A1 - Cywinski, Piotr J. A1 - Bald, Ilko T1 - Ion-Selective formation of a guanine quadruplex on DNA origami structures JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - DNA origami nanostructures are a versatile tool that can be used to arrange functionalities with high local control to study molecular processes at a single-molecule level. Here, we demonstrate that DNA origami substrates can be used to suppress the formation of specific guanine (G) quadruplex structures from telomeric DNA. The folding of telomeres into G-quadruplex structures in the presence of monovalent cations (e.g. Na+ and K+) is currently used for the detection of K+ ions, however, with insufficient selectivity towards Na+. By means of FRET between two suitable dyes attached to the 3- and 5-ends of telomeric DNA we demonstrate that the formation of G-quadruplexes on DNA origami templates in the presence of sodium ions is suppressed due to steric hindrance. Hence, telomeric DNA attached to DNA origami structures represents a highly sensitive and selective detection tool for potassium ions even in the presence of high concentrations of sodium ions. KW - DNA nanotechnology KW - FRET KW - G-quadruplexes KW - nanostructures KW - self-assembly Y1 - 2015 U6 - https://doi.org/10.1002/anie.201409278 SN - 1433-7851 SN - 1521-3773 VL - 54 IS - 2 SP - 673 EP - 677 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Cywinski, Piotr J. A1 - Olejko, Lydia A1 - Löhmannsröben, Hans-Gerd T1 - A time-resolved luminescent competitive assay to detect L-selectin using aptamers as recognition elements JF - Analytica chimica acta : an international journal devoted to all branches of analytical chemistry N2 - L-selectin is a protein with potential importance for numerous diseases and clinical disorders. In this paper, we present a new aptamer-based luminescent assay developed to detect L-selectin. The sensing system working principle is based on Forster Resonance Energy Transfer (FRET) from a donor terbium complex (TbC) to an acceptor cyanine dye (Cy5). In the present approach, the biotinylated aptamer is combined with Cy5-labelled streptavidin (Cy5-Strep) to yield an aptamer-based acceptor construct (Apta-Cy5-Strep), while L-selectin is conjugated using luminescent TbC. Upon aptamer binding to the TbC-labelled L-selectin (L-selectin-TbC), permanent donor-acceptor proximity is established which allows for radiationless energy transfer to occur. However, when unlabelled L-selectin is added, it competes with the L-selectin-TbC and the FRET signal decreases as the L-selectin concentration increases. FRET from the TbC to Cy5 was observed with time-gated time-resolved luminescence spectroscopy. A significant change in the corrected luminescence signal was observed in the dynamic range of 10 -500 ng/mL L-selectin, the concentration range relevant for accelerated cognitive decline of Alzheimer's disease, with a limit of detection (LOD) equal to 10 ng/mL. The aptasensor-based assay is homogeneous and can be realized within one hour. Therefore, this method has the potential to become an alternative to tedious heterogeneous analytical methods, e.g. based on enzyme-linked immunosorbent assay (ELISA). (C) 2015 Elsevier B.V. All rights reserved. KW - Aptamer KW - FRET KW - L-selectin KW - Luminescence spectroscopy KW - Fluoroassay KW - Lanthanide Y1 - 2015 U6 - https://doi.org/10.1016/j.aca.2015.06.045 SN - 0003-2670 SN - 1873-4324 VL - 887 SP - 209 EP - 215 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Nazir, Rashid A1 - Meiling, Till Thomas A1 - Cywinski, Piotr J. A1 - Gryko, Daniel T. T1 - Synthesis and Optical Properties of alpha,beta-Unsaturated Ketones Bearing a Benzofuran Moiety JF - Asian journal of organic chemistry : an ACES journal N2 - Five pi-expanded alpha,beta-unsaturated ketones have been prepared from a strongly electron-rich benzofuran derivative via Knoevenagel reaction and aldol condensation. The incorporation of two 6-didodecylaminobenzofuran-2-yl groups at the periphery of D-pi-A and D-pi-A-pi-D molecules resulted in dyes with excellent solubility in the majority of organic solvents. In contrast to the majority of alpha,beta-unsaturated ketones, these dyes emit relatively strongly in the red region with a fluorescence quantum yield up to 40%. They also display strong solvatofluorochromism with emission shifting from 570 nm in toluene to 670 nm in CHCl3. Depending on the chemical structure, they two-photon cross-sections (sigma(2)) are up to 1700 GM (1 GM=10(50) cm(4)s photon(-1)). KW - aldol reaction KW - benzofurans KW - fluorescence KW - ketones KW - two-photon absorption Y1 - 2015 U6 - https://doi.org/10.1002/ajoc.201500242 SN - 2193-5807 SN - 2193-5815 VL - 4 IS - 9 SP - 929 EP - 935 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Weclawski, Marek K. A1 - Meiling, Till Thomas A1 - Leniak, Arkadiusz A1 - Cywinski, Piotr J. A1 - Gryko, Daniel T. T1 - Planar, Fluorescent Push-Pull System That Comprises Benzofuran and Iminocoumarin Moieties JF - Organic letters N2 - Previously unknown, vertically linked heterocycles comprised of benzofuran and iminocoumarin moieties have been synthesized directly from 1,5-dibenzoyloxyanthraquinone and arylacetonitriles via double Knoevenagel condensation followed by formal HCN elimination. The structural assembly of fully conjugated, electron-rich benzofuran and electron-deficient iminocoumarin is responsible for the strongly polarized nature of these heterocycles which translates into their polarity-sensitive fluorescence. Y1 - 2015 U6 - https://doi.org/10.1021/acs.orglett.5b02042 SN - 1523-7060 SN - 1523-7052 VL - 17 IS - 17 SP - 4252 EP - 4255 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Cywinski, Piotr J. A1 - Nono, Katia Nchimi A1 - Charbonniere, Loic J. A1 - Hammann, Tommy A1 - Löhmannsröben, Hans-Gerd T1 - Photophysical evaluation of a new functional terbium complex in FRET-based time-resolved homogenous fluoroassays JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - A new functional luminescent lanthanide complex (LLC) has been synthesized with terbium as a central lanthanide ion and biotin as a functional moiety. Unlike in typical lanthanide complexes assembled via carboxylic moieties, in the presented complex, four phosphate groups are chelating the central lanthanide ion. This special chemical assembly enhances the complex stability in phosphate buffers conventionally used in biochemistry. The complex synthesis strategy and photophysical properties are described as well as the performance in time-resolved Forster Resonance Energy Transfer (FRET) assays. In those assays, this biotin-LLC transferred energy either to acceptor organic dyes (Cy5 or AF680) labelled on streptavidin or to quantum dots (QD655 or QD705) surfacefunctionalised with streptavidins. The permanent spatial donor-acceptor proximity is assured through strong and stable biotin-streptavidin binding. The energy transfer is evidenced from the quenching observed in donor emission and from a decrease in donor luminescence decay, both associated with simultaneous increase in acceptor intensity and in the decay time. The dye-based assays are realised in TRIS and in PBS, whereas QD-based systems are studied in borate buffer. The delayed emission analysis allows for quantifying the recognition process and for auto-fluorescence-free detection, which is particularly relevant for application in bioanalysis. In accordance with Forster theory, Forsterradii (R0) were found to be around 60 angstrom for organic dyes and around 105 angstrom for QDs. The FRET efficiency (Z) reached 80% and 25% for dye and QD acceptors, respectively. Physical donor-acceptor distances (r) have been determined in the range 45-60 angstrom for organic dye acceptors, while for acceptor QDs between 120 angstrom and 145 angstrom. This newly synthesised biotin-LLC extends the class of highly sensitive analytical tools to be applied in the bioanalytical methods such as time-resolved fluoroimmunoassays (TR-FIA), luminescent imaging and biosensing. Y1 - 2014 U6 - https://doi.org/10.1039/c3cp54883j SN - 1463-9076 SN - 1463-9084 VL - 16 IS - 13 SP - 6060 EP - 6067 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Cywinski, Piotr J. A1 - Moro, Artur J. A1 - Löhmannsröben, Hans-Gerd T1 - Cyclic GMP recognition using ratiometric QD-fluorophore conjugate nanosensors JF - Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics KW - Quantum dots KW - Naphthyridines KW - Cyclic GMP KW - Base pairing KW - Fluorescent nanoconjugate KW - Nanosensor Y1 - 2014 U6 - https://doi.org/10.1016/j.bios.2013.09.002 SN - 0956-5663 SN - 1873-4235 VL - 52 SP - 288 EP - 292 PB - Elsevier CY - Oxford ER -