TY - JOUR A1 - Ben Dor, Yoav A1 - Flax, Tomer A1 - Levitan, Itamar A1 - Enzel, Yehouda A1 - Brauer, Achim A1 - Erel, Yigal T1 - The paleohydrological implications of aragonite precipitation under contrasting climates in the endorheic Dead Sea and its precursors revealed by experimental investigations JF - Chemical geology : official journal of the European Association for Geochemistry N2 - Carbonate minerals are common in both marine and lacustrine records, and are frequently used for paleoenvironmental reconstructions. The sedimentary sequence of the endorheic Dead Sea and its precursors contain aragonite laminae that provide a detailed sedimentary archive of climatic, hydrologic, limnologic and environmental conditions since the Pleistocene. However, the interpretation of these archives requires a detailed understanding of the constraints and mechanisms affecting CaCO3 precipitation, which are still debated. The implications of aragonite precipitation in the Dead Sea and in its late Pleistocene predecessor (Lake Lisan) were investigated in this study by mixing natural and synthetic brines with a synthetic bicarbonate solution that mimics flash-floods composition, with and without the addition of extracellular polymeric substances (EPS). Aragonite precipitation was monitored, and precipitation rates and carbonate yields were calculated and are discussed with respect to modern aquatic environments. The experimental insights on aragonite precipitation are then integrated with microfacies analyses in order to reconstruct and constrain prevailing limnogeological processes and their hydroclimatic drivers under low (interglacial) and high (glacial) lake level stands. Aragonite precipitation took place within days to several weeks after the mixing of the brines with a synthetic bicarbonate solution. Incubation time was proportional to bicarbonate concentration, and precipitation rates were partially influenced by ionic strength. Additionally, extracellular polymeric substances inhibited aragonite precipitation for several months. As for the lake's water budget, our calculations suggest that the precipitation of a typical aragonite lamina (0.5 mm thick) during high lake stand requires unreasonable freshwater inflow from either surface or subsurface sources. This discrepancy can be resolved by considering one or a combination of the following scenarios; (1) discontinuous aragonite deposition over parts of the lake floor; (2) supply of additional carbonate flux (or fluxes) to the lake from aeolian dust and the remobilization and dissolution of dust deposits at the watershed; (3) carbonate production via oxidation of organic carbon by sulfate-reducing bacteria. Altogether, it is suggested that aragonite laminae thickness cannot be directly interpreted for quantitatively reconstructing the hydrological balance for the entire lake, they may still prove valuable for identifying inherent hydroclimatic periodicities at a single site. KW - Dead Sea KW - Lake Lisan KW - Aragonite KW - Varves KW - Paleolimnology KW - Paleohydrology KW - Dead Sea deep drilling project KW - EPS KW - Extracellular polymeric substances KW - Levant climate KW - Eastern Mediterranean KW - Paleoclimate KW - Lacustrine carbonate Y1 - 2021 U6 - https://doi.org/10.1016/j.chemgeo.2021.120261 SN - 0009-2541 SN - 1872-6836 VL - 576 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Müller, Daniela A1 - Neugebauer, Ina A1 - Ben Dor, Yoav A1 - Enzel, Yehouda A1 - Schwab, Markus Julius A1 - Tjallingii, Rik A1 - Brauer, Achim T1 - Phases of stability during major hydroclimate change ending the Last Glacial in the Levant JF - Scientific reports N2 - In-depth understanding of the reorganization of the hydrological cycle in response to global climate change is crucial in highly sensitive regions like the eastern Mediterranean, where water availability is a major factor for socioeconomic and political development. The sediments of Lake Lisan provide a unique record of hydroclimatic change during the last glacial to Holocene transition (ca. 24-11 ka) with its tremendous water level drop of similar to 240 m that finally led to its transition into the present hypersaline water body-the Dead Sea. Here we utilize high-resolution sedimentological analyses from the marginal terraces and deep lake to reconstruct an unprecedented seasonal record of the last millennia of Lake Lisan. Aragonite varve formation in intercalated intervals of our record demonstrates that a stepwise long-term lake level decline was interrupted by almost one millennium of rising or stable water level. Even periods of pronounced water level drops indicated by gypsum deposition were interrupted by decades of positive water budgets. Our results thus highlight that even during major climate change at the end of the last glacial, decadal to millennial periods of relatively stable or positive moisture supply occurred which could have been an important premise for human sedentism. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-10217-9 SN - 2045-2322 VL - 12 IS - 1 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - JOUR A1 - Ben Dor, Yoav A1 - Neugebauer, Ina A1 - Enzel, Yehouda A1 - Schwab, Markus J. A1 - Tjallingii, Rik A1 - Erel, Yigal A1 - Brauer, Achim T1 - Reply to comment on: Ben Dor, Yoav et al. : Varves of the Dead Sea sedimentary record. - In: Quaternary science reviews : the international multidisciplinary research and review journal. - 215 (2019), S. 173 - 184. - (ISSN: 0277-3791). - https://doi.org/10.1016/j.quascirev.2019.04.011 JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - In the comment on "Varves of the Dead Sea sedimentary record." Quaternary Science Reviews 215 (Ben Dor et al., 2019): 173-184. by R. Bookman, two recently published papers are suggested to prove that the interpretation of the laminated sedimentary sequence of the Dead Sea, deposited mostly during MIS2 and Holocene pluvials, as annual deposits (i.e., varves) is wrong. In the following response, we delineate several lines of evidence which coalesce to demonstrate that based on the vast majority of evidence, including some of the evidence provided in the comment itself, the interpretation of these sediments as varves is the more likely scientific conclusion. We further discuss the evidence brought up in the comment and its irrelevance and lack of robustness for addressing the question under discussion. Y1 - 2020 U6 - https://doi.org/10.1016/j.quascirev.2019.106063 SN - 0277-3791 VL - 231 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Ben Dor, Yoav A1 - Neugebauer, Ina A1 - Enzel, Yehouda A1 - Schwab, Markus Julius A1 - Tjallingii, Rik A1 - Erel, Yigal A1 - Brauer, Achim T1 - Varves of the Dead Sea sedimentary record JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - The sedimentary record of the Dead Sea provides an exceptional high-resolution archive of past climate changes in the drought-sensitive eastern Mediterranean-Levant, a key region for the development of humankind at the boundary of global climate belts. Moreover, it is the only deep hypersaline lake known to have deposited long sequences of finely laminated, annually deposited sediments (i.e. varves) of varied compositions, including aragonite, gypsum, halite and clastic sediments. Vast efforts have been made over the years to decipher the environmental information stored in these evaporitic-clastic sequences spanning from the Pleistocene Lake Amora to the Holocene Dead Sea. A general characterisation of sediment facies has been derived from exposed sediment sections, as well as from shallow- and deep-water sediment cores. During high lake stands and episodes of positive water budget, mostly during glacial times, alternating aragonite and detritus laminae (‘aad’ facies) were accumulated, whereas during low lake stands and droughts, prevailing during interglacials, laminated detritus (‘ld’ facies) and laminated halite (‘lh’ facies) dominate the sequence. In this paper, we (i) review the three types of laminated sediments of the Dead Sea sedimentary record (‘aad’, ‘ld’ and ‘lh’ facies), (ii) discuss their modes of formation, deposition and accumulation, and their interpretation as varves, and (iii) illustrate how Dead Sea varves are utilized for palaeoclimate reconstructions and for establishing floating chronologies. KW - ICDP Dead Sea deep drilling KW - Hypersaline lake KW - Lacustrine sediments KW - Evaporitic varves KW - Palaeoclimate reconstruction KW - Varve chronologies Y1 - 2019 U6 - https://doi.org/10.1016/j.quascirev.2019.04.011 SN - 0277-3791 VL - 215 SP - 173 EP - 184 PB - Elsevier CY - Oxford ER -