TY - JOUR A1 - Verweij, Marco A1 - Ney, Steven A1 - Thompson, Michael T1 - Cultural Theory’s contributions to climate science BT - reply to Hansson JF - European journal for philosophy of science N2 - In his article, 'Social constructionism and climate science denial', Hansson claims to present empirical evidence that the cultural theory developed by Dame Mary Douglas, Aaron Wildavsky and ourselves (among others) leads to (climate) science denial. In this reply, we show that there is no validity to these claims. First, we show that Hansson's empirical evidence that cultural theory has led to climate science denial falls apart under closer inspection. Contrary to Hansson's claims, cultural theory has made significant contributions to understanding and addressing climate change. Second, we discuss various features of Douglas' cultural theory that differentiate it from other constructivist approaches and make it compatible with the scientific method. Thus, we also demonstrate that cultural theory cannot be accused of epistemic relativism. KW - Mary Douglas KW - Aaron Wildavsky KW - Cultural theory KW - Climate change Y1 - 2022 U6 - https://doi.org/10.1007/s13194-022-00464-y SN - 1879-4912 SN - 1879-4920 VL - 12 IS - 2 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Vogel, Johannes T1 - Drivers of phenological changes in southern Europe JF - International Journal of Biometeorology N2 - The life cycle of plants is largely determined by climate, which renders phenological responses to climate change a highly suitable bioindicator of climate change. Yet, it remains unclear, which are the key drivers of phenological patterns at certain life stages. Furthermore, the varying responses of species belonging to different plant functional types are not fully understood. In this study, the role of temperature and precipitation as environmental drivers of phenological changes in southern Europe is assessed. The trends of the phenophases leaf unfolding, flowering, fruiting, and senescence are quantified, and the corresponding main environmental drivers are identified. A clear trend towards an earlier onset of leaf unfolding, flowering, and fruiting is detected, while there is no clear pattern for senescence. In general, the advancement of leaf unfolding, flowering and fruiting is smaller for deciduous broadleaf trees in comparison to deciduous shrubs and crops. Many broadleaf trees are photoperiod-sensitive; therefore, their comparatively small phenological advancements are likely the effect of photoperiod counterbalancing the impact of increasing temperatures. While temperature is identified as the main driver of phenological changes, precipitation also plays a crucial role in determining the onset of leaf unfolding and flowering. Phenological phases advance under dry conditions, which can be linked to the lack of transpirational cooling leading to rising temperatures, which subsequently accelerate plant growth. KW - Phenology KW - Southern Europe KW - Plant functional types KW - Linear mixed effect model KW - Climate change Y1 - 2022 U6 - https://doi.org/10.1007/s00484-022-02331-0 SN - 0020-7128 SN - 1432-1254 VL - 66 IS - 9 SP - 1903 EP - 1914 PB - Springer CY - New York ER - TY - JOUR A1 - Buter, Anuschka A1 - Heckmann, Tobias A1 - Filisetti, Lorenzo A1 - Savi, Sara A1 - Mao, Luca A1 - Gems, Bernhard A1 - Comiti, Francesco T1 - Effects of catchment characteristics and hydro-meteorological scenarios on sediment connectivity in glacierised catchments JF - Geomorphology : an international journal on pure and applied geomorphology N2 - In the past decade, sediment connectivity has become a widely recognized characteristic of a geomorphic system. However, the quantification of functional connectivity (i.e. connectivity which arises due to the actual occurrence of sediment transport processes) and its variation over space and time is still a challenge. In this context, this study assesses the effects of expected future phenomena in the context of climate change (i.e. glacier retreat, permafrost degradation or meteorological extreme events) on sediment transport dynamics in a glacierised Alpine basin. The study area is the Sulden river basin (drainage area 130 km(2)) in the Italian Alps, which is composed of two geomorphologically diverse sub-basins. Based on graph theory, we evaluated the spatio-temporal variations in functional connectivity in these two sub-basins. The graph-object, obtained by manually mapping sediment transport processes between landforms, was adapted to 6 different hydro-meteorological scenarios, which derive from combining base, heatwave and rainstorm conditions with snowmelt and glacier-melt periods. For each scenario and each sub-basin, the sediment transport network and related catchment characteristics were analysed. To compare the effects of the scenarios on functional connectivity, we introduced a connectivity degree, calculated based on the area of the landforms involved in sediment cascades. Results indicate that the area of the basin connected to its outlet in terms of sediment transport might feature a six-fold increase in case of rainstorm conditions compared to "average " meteorological conditions assumed for the base scenario. Furthermore, markedly different effects of climate change on sediment connectivity are expected between the two sub-catchments due to their contrasting morphological and lithological characteristics, in terms of relative importance of rainfall triggered colluvial processes vs temperature-driven proglacial fluvial dynamics. KW - Functional connectivity KW - Graph theory KW - Climate change KW - Geomorphic systems Y1 - 2022 U6 - https://doi.org/10.1016/j.geomorph.2022.108128 SN - 0169-555X SN - 1872-695X VL - 402 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Öztürk, Ugur A1 - Bozzolan, Elisa A1 - Holcombe, Elizabeth A. A1 - Shukla, Roopam A1 - Pianosi, Francesca A1 - Wagener, Thorsten T1 - How climate change and unplanned urban sprawl bring more landslides JF - Nature : the international weekly journal of science N2 - More settlements will suffer as heavy rains and unregulated construction destabilize slopes in the tropics, models show. KW - Geophysics KW - Engineering KW - Climate change KW - Policy Y1 - 2022 U6 - https://doi.org/10.1038/d41586-022-02141-9 SN - 0028-0836 SN - 1476-4687 VL - 608 IS - 7922 SP - 262 EP - 265 PB - Nature portfolio CY - Berlin ER - TY - JOUR A1 - Fuhr, Harald T1 - The rise of the Global South and the rise in carbon emissions JF - Third world quarterly N2 - Jointly with the Global North, the rise of the Global South has come at a high cost to the environment. Driven by its high energy intensity and the use of fossil fuels, the South has contributed a significant portion of global emissions during the last 30 years, and is now contributing some 63% of today's total GHG emissions (including land-use change and forestry). Similar to the Global North, the Global South's emissions are heavily concentrated: India and China alone account for some 60% and the top 10 countries for some 78% of the group's emissions, while some 120 countries account for only 22%. Without highlighting such differences, it makes little sense to use the term 'Global South'. Its members are affected differently, and contribute differently to global climate change. They neither share a common view, nor do they pursue joint interests when it comes to international climate negotiations. Instead, they are organised into more than a dozen subgroups of the global climate regime. There is no single climate strategy for the Global South, and climate action will differ enormously from country to country. Furthermore, just and equitable transitions may be particularly challenging for some countries. KW - Climate change KW - international development KW - energy KW - environmental policy KW - Global South KW - transition policy Y1 - 2021 U6 - https://doi.org/10.1080/01436597.2021.1954901 SN - 0143-6597 SN - 1360-2241 VL - 42 IS - 11 SP - 2724 EP - 2746 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Kotz, Maximilian A1 - Wenz, Leonie A1 - Stechemesser, Annika A1 - Kalkuhl, Matthias A1 - Levermann, Anders T1 - Day-to-day temperature variability reduces economic growth JF - Nature climate change N2 - Elevated annual average temperature has been found to impact macro-economic growth. However, various fundamental elements of the economy are affected by deviations of daily temperature from seasonal expectations which are not well reflected in annual averages. Here we show that increases in seasonally adjusted day-to-day temperature variability reduce macro-economic growth independent of and in addition to changes in annual average temperature. Combining observed day-to-day temperature variability with subnational economic data for 1,537 regions worldwide over 40 years in fixed-effects panel models, we find that an extra degree of variability results in a five percentage-point reduction in regional growth rates on average. The impact of day-to-day variability is modulated by seasonal temperature difference and income, resulting in highest vulnerability in low-latitude, low-income regions (12 percentage-point reduction). These findings illuminate a new, global-impact channel in the climate–economy relationship that demands a more comprehensive assessment in both climate and integrated assessment models. KW - Climate change KW - Climate-change impacts KW - Economics KW - Environmental economics KW - Environmental impact Y1 - 2021 U6 - https://doi.org/10.1038/s41558-020-00985-5 SN - 1758-678X SN - 1758-6798 VL - 11 IS - 4 SP - 319 EP - 325 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Vogel, Johannes A1 - Paton, Eva A1 - Aich, Valentin A1 - Bronstert, Axel T1 - Increasing compound warm spells and droughts in the Mediterranean Basin JF - Weather and climate extremes N2 - The co-occurrence of warm spells and droughts can lead to detrimental socio-economic and ecological impacts, largely surpassing the impacts of either warm spells or droughts alone. We quantify changes in the number of compound warm spells and droughts from 1979 to 2018 in the Mediterranean Basin using the ERA5 data set. We analyse two types of compound events: 1) warm season compound events, which are extreme in absolute terms in the warm season from May to October and 2) year-round deseasonalised compound events, which are extreme in relative terms respective to the time of the year. The number of compound events increases significantly and especially warm spells are increasing strongly – with an annual growth rates of 3.9 (3.5) % for warm season (deseasonalised) compound events and 4.6 (4.4) % for warm spells –, whereas for droughts the change is more ambiguous depending on the applied definition. Therefore, the rise in the number of compound events is primarily driven by temperature changes and not the lack of precipitation. The months July and August show the highest increases in warm season compound events, whereas the highest increases of deseasonalised compound events occur in spring and early summer. This increase in deseasonalised compound events can potentially have a significant impact on the functioning of Mediterranean ecosystems as this is the peak phase of ecosystem productivity and a vital phenophase. KW - Compound events KW - Warm spells KW - Droughts KW - Mediterranean basin KW - Extreme events KW - Climate change Y1 - 2021 U6 - https://doi.org/10.1016/j.wace.2021.100312 SN - 2212-0947 VL - 32 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Leins, Johannes A. A1 - Banitz, Thomas A1 - Grimm, Volker A1 - Drechsler, Martin T1 - High-resolution PVA along large environmental gradients to model the combined effects of climate change and land use timing BT - lessons from the large marsh grasshopper JF - Ecological modelling : international journal on ecological modelling and systems ecology N2 - Both climate change and land use regimes affect the viability of populations, but they are often studied separately. Moreover, population viability analyses (PVAs) often ignore the effects of large environmental gradients and use temporal resolutions that are too coarse to take into account that different stages of a population's life cycle may be affected differently by climate change. Here, we present the High-resolution Large Environmental Gradient (HiLEG) model and apply it in a PVA with daily resolution based on daily climate projections for Northwest Germany. We used the large marsh grasshopper (LMG) as the target species and investigated (1) the effects of climate change on the viability and spatial distribution of the species, (2) the influence of the timing of grassland mowing on the species and (3) the interaction between the effects of climate change and grassland mowing. The stageand cohort-based model was run for the spatially differentiated environmental conditions temperature and soil moisture across the whole study region. We implemented three climate change scenarios and analyzed the population dynamics for four consecutive 20-year periods. Climate change alone would lead to an expansion of the regions suitable for the LMG, as warming accelerates development and due to reduced drought stress. However, in combination with land use, the timing of mowing was crucial, as this disturbance causes a high mortality rate in the aboveground life stages. Assuming the same date of mowing throughout the region, the impact on viability varied greatly between regions due to the different climate conditions. The regional negative effects of the mowing date can be divided into five phases: (1) In early spring, the populations were largely unaffected in all the regions; (2) between late spring and early summer, they were severely affected only in warm regions; (3) in summer, all the populations were severely affected so that they could hardly survive; (4) between late summer and early autumn, they were severely affected in cold regions; and (5) in autumn, the populations were equally affected across all regions. The duration and start of each phase differed slightly depending on the climate change scenario and simulation period, but overall, they showed the same pattern. Our model can be used to identify regions of concern and devise management recommendations. The model can be adapted to the life cycle of different target species, climate projections and disturbance regimes. We show with our adaption of the HiLEG model that high-resolution PVAs and applications on large environmental gradients can be reconciled to develop conservation strategies capable of dealing with multiple stressors. KW - Climate change KW - Land use KW - Population viability analysis KW - Stage-based model KW - High resolution KW - Environmental gradients Y1 - 2020 U6 - https://doi.org/10.1016/j.ecolmodel.2020.109355 SN - 0304-3800 SN - 1872-7026 VL - 440 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Luis Horreo, Jose A1 - Luisa Pelaez, Maria A1 - Breedveld, Merel Cathelijne A1 - Suarez, Teresa A1 - Urieta, Maria A1 - Fitze, Patrick S. T1 - Population structure of the oviparous South-West European common lizard JF - European journal of wildlife research N2 - Gene flow is an important factor determining the evolution of a species, since it directly affects population structure and species’ adaptation. Here, we investigated population structure, population history, and migration among populations covering the entire distribution of the geographically isolated South-West European common lizard (Zootoca vivipara louislantzi) using 34 newly developed polymorphic microsatellite markers. The analyses unravelled the presence of isolation by distance, inbreeding, recent bottlenecks, genetic differentiation, and low levels of migration among most populations, suggesting that Z. vivipara louislantzi is threatened. The results point to discontinuous populations and are in line with physical barriers hindering longitudinal migration south to the central Pyrenean cordillera and latitudinal migration in the central Pyrenees. In contrast, evidence for longitudinal migration exists from the lowlands north to the central Pyrenean cordillera and the Cantabrian Mountains. The locations of the populations south to the central Pyrenean cordillera were identified as the first to be affected by global warming; thus, management actions aimed at avoiding population declines should start in this area. KW - Climate change KW - Conservation KW - First-generation migrant KW - gene flow KW - IBD KW - Zootoca vivipara Y1 - 2019 U6 - https://doi.org/10.1007/s10344-018-1242-6 SN - 1612-4642 SN - 1439-0574 VL - 65 IS - 1 PB - Springer CY - New York ER - TY - JOUR A1 - Piontek, Franziska A1 - Kalkuhl, Matthias A1 - Kriegler, Elmar A1 - Schultes, Anselm A1 - Leimbach, Marian A1 - Edenhofer, Ottmar A1 - Bauer, Nico T1 - Economic Growth Effects of Alternative Climate Change Impact Channels in Economic Modeling JF - Environmental & resource economics : the official journal of the European Association of Environmental and Resource Economists N2 - Despite increasing empirical evidence of strong links between climate and economic growth, there is no established model to describe the dynamics of how different types of climate shocks affect growth patterns. Here we present the first comprehensive, comparative analysis of the long-term dynamics of one-time, temporary climate shocks on production factors, and factor productivity, respectively, in a Ramsey-type growth model. Damages acting directly on production factors allow us to study dynamic effects on factor allocation, savings and economic growth. We find that the persistence of impacts on economic activity is smallest for climate shocks directly impacting output, and successively increases for direct damages on capital, loss of labor and productivity shocks, related to different responses in savings rates and factor-specific growth. Recurring shocks lead to large welfare effects and long-term growth effects, directly linked to the persistence of individual shocks. Endogenous savings and shock anticipation both have adaptive effects but do not eliminate differences between impact channels or significantly lower the dissipation time. Accounting for endogenous growth mechanisms increases the effects. We also find strong effects on income shares, important for distributional implications. This work fosters conceptual understanding of impact dynamics in growth models, opening options for links to empirics. KW - Climate change KW - Damages KW - Economic growth KW - Impact channels KW - Production factors KW - Persistence Y1 - 2018 U6 - https://doi.org/10.1007/s10640-018-00306-7 SN - 0924-6460 SN - 1573-1502 VL - 73 IS - 4 SP - 1357 EP - 1385 PB - Springer CY - Dordrecht ER -