TY - JOUR A1 - Granacher, Urs A1 - Lacroix, Andre A1 - Roettger, Katrin A1 - Gollhofer, Albert A1 - Mühlbauer, Thomas T1 - Relationships between trunk muscle strength, spinal mobility, and balance performance in older adults JF - Journal of aging and physical activity N2 - This study investigated associations between variables of trunk muscle strength (TMS), spinal mobility, and balance in seniors. Thirty-four seniors (sex: 18 female, 16 male; age: 70 +/- 4 years; activity level: 13 +/- 7 hr/week) were tested for maximal isometric strength (MIS) of the trunk extensors, flexors, lateral flexors, rotators, spinal mobility, and steady-state, reactive, and proactive balance. Significant correlations were detected between all measures of TMS and static steady-state balance (r = .43.57, p < .05). Significant correlations were observed between specific measures of TMS and dynamic steady-state balance (r = .42.55, p < .05). No significant correlations were found between all variables of TMS and reactive/proactive balance and between all variables of spinal mobility and balance. Regression analyses revealed that TMS explains between 1-33% of total variance of the respective balance parameters. Findings indicate that TMS is related to measures of steady-state balance which may imply that TMS promoting exercises should be integrated in strength training for seniors. KW - elderly KW - core KW - gait KW - postural balance KW - force KW - physical performance Y1 - 2014 U6 - https://doi.org/10.1123/JAPA.2013-0108 SN - 1063-8652 SN - 1543-267X VL - 22 IS - 4 SP - 490 EP - 498 PB - Human Kinetics Publ. CY - Champaign ER - TY - JOUR A1 - Mainka, Stefan A1 - Wissel, Jörg A1 - Völler, Heinz A1 - Evers, Stefan T1 - The Use of Rhythmic Auditory Stimulation to Optimize Treadmill Training for Stroke Patients BT - a randomized controlled trial JF - Frontiers in Neurology N2 - The use of functional music in gait training termed rhythmic auditory stimulation (RAS) and treadmill training (TT) have both been shown to be effective in stroke patients (SP). The combination of RAS and treadmill training (RAS-TT) has not been clinically evaluated to date. The aim of the study was to evaluate the efficacy of RAS-TT on functional gait in SR The protocol followed the design of an explorative study with a rater-blinded three arm prospective randomized controlled parallel group design. Forty-five independently walking SP with a hemiparesis of the lower limb or an unsafe and asymmetrical walking pattern were recruited. RAS-TT was carried out over 4 weeks with TT and neurodevelopmental treatment based on Bobath approach (NDT) serving as control interventions. For RAS-TT functional music was adjusted individually while walking on the treadmill. Pre and post-assessments consisted of the fast gait speed test (FGS), a gait analysis with the locometre (LOC), 3 min walking time test (3MWT), and an instrumental evaluation of balance (IEB). Raters were blinded to group assignments. An analysis of covariance (ANCOVA) was performed with affiliated measures from pre-assessment and time between stroke and start of study as covariates. Thirty-five participants (mean age 63.6 +/- 8.6 years, mean time between stroke and start of study 42.1 +/- 23.7 days) completed the study (11 RAS-TT, 13 TT, 11 NDT). Significant group differences occurred in the FGS for adjusted post-measures in gait velocity [F-(2,F- (34)) = 3.864, p = 0.032; partial eta(2) = 0.205] and cadence [F-(2,F- 34) = 7.656, p = 0.002; partial eta(2) = 0.338]. Group contrasts showed significantly higher values for RAS-TT. Stride length results did not vary between the groups. LOC, 3MWT, and IEB did not indicate group differences. One patient was withdrawn from TT because of pain in one arm. The study provides first evidence for a higher efficacy of RAS-TT in comparison to the standard approaches TT and NDT in restoring functional gait in SP. The results support the implementation of functional music in neurological gait rehabilitation and its use in combination with treadmill training. KW - stroke rehabilitation KW - exercise movement techniques KW - music therapy KW - music KW - gait Y1 - 2018 U6 - https://doi.org/10.3389/fneur.2018.00755 SN - 1664-2295 VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Khajooei, Mina A1 - Wochatz, Monique A1 - Baritello, Omar A1 - Mayer, Frank T1 - Effects of shoes on children’s fundamental motor skills performance JF - Footwear science : official journal of the Footwear Biomechanics Group N2 - Progression or impediment of fundamental motor skills performance (FMSP) in children depends on internal and environmental factors. Shoes as an environmental constraint are believed to affect these movements as children showed to perform qualitatively better with sports shoes than flip-flop sandals. However, locomotor performance assessments based on biomechanical variables are limited. Therefore, the objective of this experiment was to assess the biomechanical effects of wearing shoes while performing fundamental motor skills in children. Barefoot and shod conditions were tested in healthy children between the age of 4 and 7 years. They were asked to perform basic and advanced motor skills including double-leg stance, horizontal jumps, walking as well as counter-movement jumps, single-leg stance and sprinting. Postural control and ground reaction data were measured with two embedded force plates. A 3D motion capture system was used to analyse the spatiotemporal parameters of walking and sprinting. Findings showed that the parameters of single- and double-leg stance, horizontal and counter-movement jump did not differ between barefoot and shod conditions. Most of the spatiotemporal variables including cadence, stride length, stride time, and contact time of walking and sprinting were statistically different between the barefoot and shod conditions. Consequently, tested shoes did not change performance and biomechanics of postural control and jumping tasks; however, the spatiotemporal gait parameters indicate changes in walking and sprinting characteristics with shoes in children. KW - Spatiotemporal KW - kinetics KW - jumping KW - stability KW - gait Y1 - 2019 U6 - https://doi.org/10.1080/19424280.2019.1696895 SN - 1942-4280 SN - 1942-4299 VL - 12 IS - 1 SP - 55 EP - 62 PB - Taylor & Francis CY - Abingdon ER - TY - JOUR A1 - Azadian, Elaheh A1 - Majlesi, Mahdi A1 - Jafarnezhadgero, Amir Ali A1 - Granacher, Urs T1 - The impact of hearing loss on three-dimensional lower limb joint torques during walking in prepubertal boys JF - Journal of bodywork and movement therapies N2 - Introduction: In children, the impact of hearing loss on biomechanical gait parameters is not well understood. Thus, the objectives of this study were to examine three-dimensional lower limb joint torques in deaf compared to age-matched healthy (hearing) children while walking at preferred gait speed. Methods: Thirty prepubertal boys aged 8-14 were enrolled in this study and divided into a group with hearing loss (deaf group) and an age-matched healthy control. Three-dimensional joint torques were analyzed during barefoot walking at preferred speed using Kistler force plates and a Vicon motion capture system. Results: Findings revealed that boys with hearing loss showed lower joint torques in ankle evertors, knee flexors, abductors and internal rotators as well as in hip internal rotators in both, the dominant and non-dominant lower limbs (all p < 0.05; d = 1.23-7.00; 14-79%). Further, in the dominant limb, larger peak ankle dorsiflexor (p < 0.001; d = 1.83; 129%), knee adductor (p < 0.001; d = 3.20; 800%), and hip adductor torques (p < 0.001; d = 2.62; 350%) were found in deaf participants compared with controls. Conclusion: The observed altered lower limb torques during walking are indicative of unstable gait in children with hearing loss. More research is needed to elucidate whether physical training (e.g., balance and/or gait training) has the potential to improve walking performance in this patient group. (C) 2019 Elsevier Ltd. All rights reserved. KW - torque KW - hearing loss KW - gait KW - dominant limb KW - non-dominant limb Y1 - 2020 U6 - https://doi.org/10.1016/j.jbmt.2019.10.013 SN - 1360-8592 SN - 1532-9283 VL - 24 IS - 2 SP - 123 EP - 129 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Jararnezhadgero, AmirAli A1 - Mamashli, Elaheh A1 - Granacher, Urs T1 - An Endurance-Dominated Exercise Program Improves Maximum Oxygen Consumption, Ground Reaction Forces, and Muscle Activities in Patients With Moderate Diabetic Neuropathy JF - Frontiers in physiology / Frontiers Research Foundation N2 - Background: The prevalence of diabetes worldwide is predicted to increase from 2.8% in 2000 to 4.4% in 2030. Diabetic neuropathy (DN) is associated with damage to nerve glial cells, their axons, and endothelial cells leading to impaired function and mobility. Objective: We aimed to examine the effects of an endurance-dominated exercise program on maximum oxygen consumption (VO2max), ground reaction forces, and muscle activities during walking in patients with moderate DN. Methods: Sixty male and female individuals aged 45–65 years with DN were randomly assigned to an intervention (IG, n = 30) or a waiting control (CON, n = 30) group. The research protocol of this study was registered with the Local Clinical Trial Organization (IRCT20200201046326N1). IG conducted an endurance-dominated exercise program including exercises on a bike ergometer and gait therapy. The progressive intervention program lasted 12 weeks with three sessions per week, each 40–55 min. CON received the same treatment as IG after the post-tests. Pre- and post-training, VO2max was tested during a graded exercise test using spiroergometry. In addition, ground reaction forces and lower limbs muscle activities were recorded while walking at a constant speed of ∼1 m/s. Results: No statistically significant baseline between group differences was observed for all analyzed variables. Significant group-by-time interactions were found for VO2max (p < 0.001; d = 1.22). The post-hoc test revealed a significant increase in IG (p < 0.001; d = 1.88) but not CON. Significant group-by-time interactions were observed for peak lateral and vertical ground reaction forces during heel contact and peak vertical ground reaction force during push-off (p = 0.001–0.037; d = 0.56–1.53). For IG, post-hoc analyses showed decreases in peak lateral (p < 0.001; d = 1.33) and vertical (p = 0.004; d = 0.55) ground reaction forces during heel contact and increases in peak vertical ground reaction force during push-off (p < 0.001; d = 0.92). In terms of muscle activity, significant group-by-time interactions were found for vastus lateralis and gluteus medius during the loading phase and for vastus medialis during the mid-stance phase, and gastrocnemius medialis during the push-off phase (p = 0.001–0.044; d = 0.54–0.81). Post-hoc tests indicated significant intervention-related increases in vastus lateralis (p = 0.001; d = 1.08) and gluteus medius (p = 0.008; d = 0.67) during the loading phase and vastus medialis activity during mid-stance (p = 0.001; d = 0.86). In addition, post-hoc tests showed decreases in gastrocnemius medialis during the push-off phase in IG only (p < 0.001; d = 1.28). Conclusions: This study demonstrated that an endurance-dominated exercise program has the potential to improve VO2max and diabetes-related abnormal gait in patients with DN. The observed decreases in peak vertical ground reaction force during the heel contact of walking could be due to increased vastus lateralis and gluteus medius activities during the loading phase. Accordingly, we recommend to implement endurance-dominated exercise programs in type 2 diabetic patients because it is feasible, safe and effective by improving aerobic capacity and gait characteristics. KW - oxygen consumption KW - kinetics KW - electromyography KW - diabetic KW - gait Y1 - 2021 U6 - https://doi.org/10.3389/fphys.2021.654755 SN - 1664-042X VL - 12 SP - 1 EP - 15 PB - Frontiers Research Foundation CY - Lausanne, Schweiz ER - TY - JOUR A1 - Jafarnezhadgero, Amir Ali A1 - Fatollahi, Amir A1 - Granacher, Urs T1 - Eight weeks of exercising on sand has positive effects on biomechanics of walking and muscle activities in individuals with pronated feet BT - a randomized double-blinded controlled trial JF - Sports : open access journal N2 - This study aimed to investigate the effects of eight weeks of barefoot running exercise on sand versus control on measures of walking kinetics and muscle activities in individuals with diagnosed pronated feet. Sixty physically active male adults with pronated feet were randomly allocated into an intervention or a waiting control group. The intervention group conducted an 8-weeks progressive barefoot running exercise program on sand (e.g., short sprints) with three weekly sessions. Pre and post intervention, participants walked at a constant speed of 1.3 m/s +/- 5% on a 18 m walkway with a force plate embedded in the middle of the walkway. Results showed significant group-by-time interactions for peak impact vertical and lateral ground reaction forces. Training but not control resulted in significantly lower peak impact vertical and lateral ground reaction forces. Significant group-by-time interactions were observed for vastus lateralis activity during the loading phase. Training-induced increases were found for the vastus lateralis in the intervention but not in the control group. This study revealed that the applied exercise program is a suitable means to absorb ground reaction forces (e.g., lower impact vertical and lateral peaks) and increase activities of selected lower limb muscles (e.g., vastus lateralis) when walking on stable ground. KW - flat foot KW - free moment KW - gait KW - loading rate KW - training Y1 - 2022 U6 - https://doi.org/10.3390/sports10050070 SN - 2075-4663 VL - 10 IS - 5 PB - MDPI CY - Basel ER -