TY - JOUR A1 - Orzechowski, Slawomir A1 - Sitnicka, Dorota A1 - Grabowska, Agnieszka A1 - Compart, Julia A1 - Fettke, Jörg A1 - Zdunek-Zastocka, Edyta T1 - Effect of short-term cold treatment on carbohydrate metabolism in potato leaves JF - International journal of molecular sciences N2 - Plants are often challenged by an array of unfavorable environmental conditions. During cold exposure, many changes occur that include, for example, the stabilization of cell membranes, alterations in gene expression and enzyme activities, as well as the accumulation of metabolites. In the presented study, the carbohydrate metabolism was analyzed in the very early response of plants to a low temperature (2 degrees C) in the leaves of 5-week-old potato plants of the Russet Burbank cultivar during the first 12 h of cold treatment (2 h dark and 10 h light). First, some plant stress indicators were examined and it was shown that short-term cold exposure did not significantly affect the relative water content and chlorophyll content (only after 12 h), but caused an increase in malondialdehyde concentration and a decrease in the expression of NDA1, a homolog of the NADH dehydrogenase gene. In addition, it was shown that the content of transitory starch increased transiently in the very early phase of the plant response (3-6 h) to cold treatment, and then its decrease was observed after 12 h. In contrast, soluble sugars such as glucose and fructose were significantly increased only at the end of the light period, where a decrease in sucrose content was observed. The availability of the monosaccharides at constitutively high levels, regardless of the temperature, may delay the response to cold, involving amylolytic starch degradation in chloroplasts. The decrease in starch content, observed in leaves after 12 h of cold exposure, was preceded by a dramatic increase in the transcript levels of the key enzymes of starch degradation initiation, the alpha-glucan, water dikinase (GWD-EC 2.7.9.4) and the phosphoglucan, water dikinase (PWD-EC 2.7.9.5). The gene expression of both dikinases peaked at 9 h of cold exposure, as analyzed by real-time PCR. Moreover, enhanced activities of the acid invertase as well as of both glucan phosphorylases during exposure to a chilling temperature were observed. However, it was also noticed that during the light phase, there was a general increase in glucan phosphorylase activities for both control and cold-stressed plants irrespective of the temperature. In conclusion, a short-term cold treatment alters the carbohydrate metabolism in the leaves of potato, which leads to an increase in the content of soluble sugars. KW - cold stress KW - alpha-glucan KW - water dikinase KW - phosphoglucan water dikinase KW - chloroplast isolation KW - glucan phosphorylase KW - acid invertase Y1 - 2021 U6 - https://doi.org/10.3390/ijms22137203 SN - 1422-0067 VL - 22 IS - 13 PB - MDPI CY - Basel ER - TY - JOUR A1 - Merida, Angel A1 - Fettke, Jörg T1 - Starch granule initiation in Arabidopsis thaliana chloroplasts JF - The plant journal N2 - The initiation of starch granule formation and the mechanism controlling the number of granules per plastid have been some of the most elusive aspects of starch metabolism. This review covers the advances made in the study of these processes. The analyses presented herein depict a scenario in which starch synthase isoform 4 (SS4) provides the elongating activity necessary for the initiation of starch granule formation. However, this protein does not act alone; other polypeptides are required for the initiation of an appropriate number of starch granules per chloroplast. The functions of this group of polypeptides include providing suitable substrates (maltooligosaccharides) to SS4, the localization of the starch initiation machinery to the thylakoid membranes, and facilitating the correct folding of SS4. The number of starch granules per chloroplast is tightly regulated and depends on the developmental stage of the leaves and their metabolic status. Plastidial phosphorylase (PHS1) and other enzymes play an essential role in this process since they are necessary for the synthesis of the substrates used by the initiation machinery. The mechanism of starch granule formation initiation in Arabidopsis seems to be generalizable to other plants and also to the synthesis of long-term storage starch. The latter, however, shows specific features due to the presence of more isoforms, the absence of constantly recurring starch synthesis and degradation, and the metabolic characteristics of the storage sink organs. KW - starch granules KW - starch metabolism KW - starch granule initiation KW - starch KW - granule number per chloroplast KW - starch morphology KW - Arabidopsis thaliana Y1 - 2021 U6 - https://doi.org/10.1111/tpj.15359 SN - 0960-7412 SN - 1365-313X VL - 107 IS - 3 SP - 688 EP - 697 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Liu, Qingting A1 - Li, Xiaoping A1 - Fettke, Jörg T1 - Starch granules in Arabidopsis thaliana mesophyll and guard cells show similar morphology but differences in size and number JF - International journal of molecular sciences N2 - Transitory starch granules result from complex carbon turnover and display specific situations during starch synthesis and degradation. The fundamental mechanisms that specify starch granule characteristics, such as granule size, morphology, and the number per chloroplast, are largely unknown. However, transitory starch is found in the various cells of the leaves of Arabidopsis thaliana, but comparative analyses are lacking. Here, we adopted a fast method of laser confocal scanning microscopy to analyze the starch granules in a series of Arabidopsis mutants with altered starch metabolism. This allowed us to separately analyze the starch particles in the mesophyll and in guard cells. In all mutants, the guard cells were always found to contain more but smaller plastidial starch granules than mesophyll cells. The morphological properties of the starch granules, however, were indiscernible or identical in both types of leaf cells. KW - starch granules KW - starch granule number per chloroplast KW - starch morphology KW - mesophyll cell KW - guard cell KW - LCSM KW - Arabidopsis thaliana KW - starch granule initiation KW - starch metabolism Y1 - 2021 U6 - https://doi.org/10.3390/ijms22115666 SN - 1422-0067 SN - 1661-6596 VL - 22 IS - 11 PB - Molecular Diversity Preservation International CY - Basel ER - TY - JOUR A1 - Compart, Julia A1 - Li, Xiaoping A1 - Fettke, Jörg T1 - Starch-A complex and undeciphered biopolymer JF - Journal of plant physiology : biochemistry, physiology, molecular biology and biotechnology of plants N2 - Starch is a natural storage carbohydrate in plants and algae. It consists of two relatively simple homo-biopolymers, amylopectin and amylose, with only alpha-1,4 and alpha-1,6 linked glucosyl units. Starch is an essential source of nutrition and animal food, as well as an important raw material for industry. However, despite increasing knowledge, detailed information about its structure and turnover are largely lacking. In the last decades, most data were generated using bulk experiments, a method which obviously presents limitations regarding a deeper understanding of the starch metabolism. Here, we discuss some unavoidable questions arising from the existing data. We focus on a few examples related to starch biosynthesis, degradation, and structure where these limitations strongly emerge. Closing these knowledge gaps will also be extremely important for taking the necessary steps in order to set up starch-providing crops for the challenges of the ongoing climate changes, as well as for increasing the usability of starches for industrial applications by biotechnology. KW - Starch KW - Starch structure KW - Organization model KW - Starch metabolism KW - Analytical limitations Y1 - 2021 U6 - https://doi.org/10.1016/j.jplph.2021.153389 SN - 0176-1617 SN - 1618-1328 VL - 258 SP - 258 EP - 259 PB - Elsevier CY - München ER - TY - JOUR A1 - Liu, Qingting A1 - Zhou, Yuan A1 - Fettke, Jörg T1 - Starch granule size and morphology of Arabidopsis thaliana starch-related mutants analyzed during diurnal rhythm and development JF - Molecules : a journal of synthetic chemistry and natural product chemistry / Molecular Diversity Preservation International N2 - Transitory starch plays a central role in the life cycle of plants. Many aspects of this important metabolism remain unknown; however, starch granules provide insight into this persistent metabolic process. Therefore, monitoring alterations in starch granules with high temporal resolution provides one significant avenue to improve understanding. Here, a previously established method that combines LCSM and safranin-O staining for in vivo imaging of transitory starch granules in leaves of Arabidopsis thaliana was employed to demonstrate, for the first time, the alterations in starch granule size and morphology that occur both throughout the day and during leaf aging. Several starch-related mutants were included, which revealed differences among the generated granules. In ptst2 and sex1-8, the starch granules in old leaves were much larger than those in young leaves; however, the typical flattened discoid morphology was maintained. In ss4 and dpe2/phs1/ss4, the morphology of starch granules in young leaves was altered, with a more rounded shape observed. With leaf development, the starch granules became spherical exclusively in dpe2/phs1/ss4. Thus, the presented data provide new insights to contribute to the understanding of starch granule morphogenesis. KW - starch metabolism KW - starch granule KW - starch granule size KW - starch granule morphology KW - LCSM KW - Arabidopsis thaliana Y1 - 2021 U6 - https://doi.org/10.3390/molecules26195859 SN - 1420-3049 VL - 26 SP - 1 EP - 9 PB - MDPI CY - Basel, Schweiz ET - 19 ER - TY - JOUR A1 - Singh, Aakanksha A1 - Compart, Julia A1 - AL-Rawi, Shadha Abduljaleel A1 - Mahto, Harendra A1 - Ahmad, Abubakar Musa A1 - Fettke, Jörg T1 - LIKE EARLY STARVATION 1 alters the glucan structures at the starch granule surface and thereby influences the action of both starch-synthesizing and starch-degrading enzymes JF - The plant journal N2 - For starch metabolism to take place correctly, various enzymes and proteins acting on the starch granule surface are crucial. Recently, two non-catalytic starch-binding proteins, pivotal for normal starch turnover in Arabidopsis leaves, namely, EARLY STARVATION 1 (ESV1) and its homolog LIKE EARLY STARVATION 1 (LESV), have been identified. Both share nearly 38% sequence homology. As ESV1 has been found to influence glucan phosphorylation via two starch-related dikinases, alpha-glucan, water dikinase (GWD) and phosphoglucan, water dikinase (PWD), through modulating the surface glucan structures of the starch granules and thus affecting starch degradation, we assess the impact of its homolog LESV on starch metabolism. Thus, the 65-kDa recombinant protein LESV and the 50-kDa ESV1 were analyzed regarding their influence on the action of GWD and PWD on the surface of the starch granules. We included starches from various sources and additionally assessed the effect of these non-enzymatic proteins on other starch-related enzymes, such as starch synthases (SSI and SSIII), starch phosphorylases (PHS1), isoamylase and beta-amylase. The data obtained indicate that starch phosphorylation, hydrolyses and synthesis were affected by LESV and ESV1. Furthermore, incubation with LESV and ESV1 together exerted an additive effect on starch phosphorylation. In addition, a stable alteration of the glucan structures at the starch granule surface following treatment with LESV and ESV1 was observed. Here, we discuss all the observed changes that point to modifications in the glucan structures at the surface of the native starch granules and present a model to explain the existing processes. KW - starch KW - starch metabolism KW - starch surface structure KW - Arabidopsis KW - thaliana Y1 - 2022 U6 - https://doi.org/10.1111/tpj.15855 SN - 0960-7412 SN - 1365-313X VL - 111 IS - 3 SP - 819 EP - 835 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Muntaha, Sidratul Nur A1 - Li, Xiaoping A1 - Compart, Julia A1 - Apriyanto, Ardha A1 - Fettke, Jörg T1 - Carbon pathways during transitory starch degradation in Arabidopsis differentially affect the starch granule number and morphology in the dpe2/phs1 mutant background JF - Plant physiology and biochemistry : an official journal of the Federation of European Societies of Plant Physiology N2 - The Arabidopsis knockout mutant lacking both the cytosolic disproportionating enzyme 2 (DPE2) and the plastidial phosphorylase (PHS1) had a dwarf-growth phenotype, a reduced and uneven distribution of starch within the plant rosettes, and a lower starch granule number per chloroplast under standard growth conditions. In contrast, a triple mutant impaired in starch degradation by its additional lack of the glucan, water dikinase (GWD) showed improved plant growth, a starch-excess phenotype, and a homogeneous starch distribution. Furthermore, the number of starch granules per chloroplast was increased and was similar to the wild type. We concluded that ongoing starch degradation is mainly responsible for the observed phenotype of dpe2/phs1. Next, we generated two further triple mutants lacking either the phosphoglucan, water dikinase (PWD), or the disproportionating enzyme 1 (DPE1) in the background of the double mutant. Analysis of the starch metabolism revealed that even minor ongoing starch degradation observed in dpe2/phs1/pwd maintained the double mutant phenotype. In contrast, an additional blockage in the glucose pathway of starch breakdown, as in dpe2/phs1/ dpe1, resulted in a nearly starch-free phenotype and massive chloroplast degradation. The characterized mutants were discussed in the context of starch granule formation. KW - Starch granules KW - Starch metabolism KW - Starch granule number per KW - chloroplast KW - Starch morphology KW - LCSM KW - Arabidopsis thaliana Y1 - 2022 U6 - https://doi.org/10.1016/j.plaphy.2022.03.033 SN - 0981-9428 SN - 1873-2690 VL - 180 SP - 35 EP - 41 PB - Elsevier CY - Paris ER - TY - JOUR A1 - Li, Xiaoping A1 - Apriyanto, Ardha A1 - Flores Castellanos, Junio A1 - Compart, Julia A1 - Muntaha, Sidratul Nur A1 - Fettke, Jörg T1 - Dpe2/phs1 revealed unique starch metabolism with three distinct phases characterized by different starch granule numbers per chloroplast, allowing insights into the control mechanism of granule number regulation by gene co-regulation and metabolic profiling JF - Frontiers in Plant Science N2 - An Arabidopsis mutant lacking both the cytosolic Disproportionating enzyme 2 (DPE2) and the plastidial glucan Phosphorylase 1 (PHS1) revealed a unique starch metabolism. Dpe2/phs1 has been reported to have only one starch granule number per chloroplast when grown under diurnal rhythm. For this study, we analyzed dpe2/phs1 in details following the mutant development, and found that it showed three distinct periods of granule numbers per chloroplast, while there was no obvious change observed in Col-0. In young plants, the starch granule number was similar to that in Col-0 at first, and then decreased significantly, down to one or no granule per chloroplast, followed by an increase in the granule number. Thus, in dpe2/phs1, control over the starch granule number is impaired, but it is not defective in starch granule initiation. The data also indicate that the granule number is not fixed, and is regulated throughout plant growth. Furthermore, the chloroplasts revealed alterations during these three periods, with a partially strong aberrant morphology in the middle phase. Interestingly, the unique metabolism was perpetuated when starch degradation was further impaired through an additional lack of Isoamylase 3 (ISA3) or Starch excess 4 (SEX4). Transcriptomic studies and metabolic profiling revealed the co-regulation of starch metabolism-related genes and a clear metabolic separation between the periods. Most senescence-induced genes were found to be up-regulated more than twice in the starch-less mature leaves. Thus, dpe2/phs1 is a unique plant material source, with which we may study starch granule number regulation to obtain a more detailed understanding. KW - LCSM KW - RNA-Seq KW - metabolic-profiling KW - starch granule number regulation KW - starch initiation KW - starch degradation Y1 - 2022 U6 - https://doi.org/10.3389/fpls.2022.1039534 SN - 1664-462X SP - 1 EP - 16 PB - Frontiers CY - Lausanne, Schweiz ER - TY - JOUR A1 - Apriyanto, Ardha A1 - Compart, Julia A1 - Zimmermann, Vincent A1 - Alseekh, Saleh A1 - Fernie, Alisdair A1 - Fettke, Jörg T1 - Indication that starch and sucrose are biomarkers for oil yield in oil palm (Elaeis guineensis Jacq.) JF - Food chemistry N2 - Oil palm (Elaeis guineensis Jacq.) is the most productive oil-producing crop per hectare of land. The oil that accumulates in the mesocarp tissue of the fruit is the highest observed among fruit-producing plants. A comparative analysis between high-, medium-, and low-yielding oil palms, particularly during fruit development, revealed unique characteristics. Metabolomics analysis was able to distinguish accumulation patterns defining of the various developmental stages and oil yield. Interestingly, high- and medium-yielding oil palms exhibited substantially increased sucrose levels compared to low-yielding palms. In addition, parameters such as starch granule morphology, granule size, total starch content, and starch chain length distribution (CLD) differed significantly among the oil yield categories with a clear correlation between oil yield and various starch parameters. These results provide new insights into carbohydrate and starch metabolism for biosynthesis of oil palm fruits, indicating that starch and sucrose can be used as novel, easy-to-analyze, and reliable biomarker for oil yield. KW - carbohydrate KW - mesocarp KW - metabolites KW - oil palm KW - oil yield KW - sucrose; KW - starch Y1 - 2022 U6 - https://doi.org/10.1016/j.foodchem.2022.133361 SN - 0308-8146 SN - 1873-7072 VL - 393 PB - Elsevier CY - New York, NY [u.a.] ER -