TY - JOUR A1 - Palkopoulou, Eleftheria A1 - Lipson, Mark A1 - Mallick, Swapan A1 - Nielsen, Svend A1 - Rohland, Nadin A1 - Baleka, Sina Isabelle A1 - Karpinski, Emil A1 - Ivancevici, Atma M. A1 - Thu-Hien To, A1 - Kortschak, Daniel A1 - Raison, Joy M. A1 - Qu, Zhipeng A1 - Chin, Tat-Jun A1 - Alt, Kurt W. A1 - Claesson, Stefan A1 - Dalen, Love A1 - MacPhee, Ross D. E. A1 - Meller, Harald A1 - Rocar, Alfred L. A1 - Ryder, Oliver A. A1 - Heiman, David A1 - Young, Sarah A1 - Breen, Matthew A1 - Williams, Christina A1 - Aken, Bronwen L. A1 - Ruffier, Magali A1 - Karlsson, Elinor A1 - Johnson, Jeremy A1 - Di Palma, Federica A1 - Alfoldi, Jessica A1 - Adelsoni, David L. A1 - Mailund, Thomas A1 - Munch, Kasper A1 - Lindblad-Toh, Kerstin A1 - Hofreiter, Michael A1 - Poinar, Hendrik A1 - Reich, David T1 - A comprehensive genomic history of extinct and living elephants JF - Proceedings of the National Academy of Sciences of the United States of America KW - paleogenomics KW - elephantid evolution KW - mammoth KW - admixture KW - species divergence Y1 - 2018 U6 - https://doi.org/10.1073/pnas.1720554115 SN - 0027-8424 VL - 115 IS - 11 SP - E2566 EP - E2574 PB - National Acad. of Sciences CY - Washington ER - TY - GEN A1 - Beermann, Jan A1 - Westbury, Michael V. A1 - Hofreiter, Michael A1 - Hilgers, Leon A1 - Deister, Fabian A1 - Neumann, Hermann A1 - Raupach, Michael J. T1 - Cryptic species in a well-known habitat BT - applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida) T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Taxonomy plays a central role in biological sciences. It provides a communication system for scientists as it aims to enable correct identification of the studied organisms. As a consequence, species descriptions should seek to include as much available information as possible at species level to follow an integrative concept of 'taxonomics'. Here, we describe the cryptic species Epimeria frankei sp. nov. from the North Sea, and also redescribe its sister species, Epimeria cornigera. The morphological information obtained is substantiated by DNA barcodes and complete nuclear 18S rRNA gene sequences. In addition, we provide, for the first time, full mitochondrial genome data as part of a metazoan species description for a holotype, as well as the neotype. This study represents the first successful implementation of the recently proposed concept of taxonomics, using data from high-throughput technologies for integrative taxonomic studies, allowing the highest level of confidence for both biodiversity and ecological research. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1059 KW - multiple sequence alignment KW - Oxidase Subunit-I KW - mitochondrial genome KW - control region KW - Ribosomal-RNA KW - asellota crustacea KW - gammarus crustacea KW - deep-sea KW - DNA KW - evolution Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-460792 SN - 1866-8372 IS - 1059 ER - TY - JOUR A1 - Beermann, Jan A1 - Westbury, Michael V. A1 - Hofreiter, Michael A1 - Hilgers, Leon A1 - Deister, Fabian A1 - Neumann, Hermann A1 - Raupach, Michael J. T1 - Cryptic species in a well-known habitat BT - applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida) JF - Scientific reports N2 - Taxonomy plays a central role in biological sciences. It provides a communication system for scientists as it aims to enable correct identification of the studied organisms. As a consequence, species descriptions should seek to include as much available information as possible at species level to follow an integrative concept of 'taxonomics'. Here, we describe the cryptic species Epimeria frankei sp. nov. from the North Sea, and also redescribe its sister species, Epimeria cornigera. The morphological information obtained is substantiated by DNA barcodes and complete nuclear 18S rRNA gene sequences. In addition, we provide, for the first time, full mitochondrial genome data as part of a metazoan species description for a holotype, as well as the neotype. This study represents the first successful implementation of the recently proposed concept of taxonomics, using data from high-throughput technologies for integrative taxonomic studies, allowing the highest level of confidence for both biodiversity and ecological research. Y1 - 2018 U6 - https://doi.org/10.1038/s41598-018-25225-x SN - 2045-2322 VL - 8 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Wutke, Saskia A1 - Sandoval-Castellanos, Edson A1 - Benecke, Norbert A1 - Döhle, Hans-Jürgen A1 - Friederich, Susanne A1 - Gonzalez, Javier A1 - Hofreiter, Michael A1 - Lougas, Lembi A1 - Magnell, Ola A1 - Malaspinas, Anna-Sapfo A1 - Morales-Muniz, Arturo A1 - Orlando, Ludovic A1 - Reissmann, Monika A1 - Trinks, Alexandra A1 - Ludwig, Arne T1 - Decline of genetic diversity in ancient domestic stallions in Europe JF - Science Advances N2 - Present-day domestic horses are immensely diverse in their maternally inherited mitochondrial DNA, yet they show very little variation on their paternally inherited Y chromosome. Although it has recently been shown that Y chromosomal diversity in domestic horses was higher at least until the Iron Age, when and why this diversity disappeared remain controversial questions. We genotyped 16 recently discovered Y chromosomal single-nucleotide polymorphisms in 96 ancient Eurasian stallions spanning the early domestication stages (Copper and Bronze Age) to the Middle Ages. Using this Y chromosomal time series, which covers nearly the entire history of horse domestication, we reveal how Y chromosomal diversity changed over time. Our results also show that the lack of multiple stallion lineages in the extant domestic population is caused by neither a founder effect nor random demographic effects but instead is the result of artificial selection-initially during the Iron Age by nomadic people from the Eurasian steppes and later during the Roman period. Moreover, the modern domestic haplotype probably derived from another, already advantageous, haplotype, most likely after the beginning of the domestication. In line with recent findings indicating that the Przewalski and domestic horse lineages remained connected by gene flow after they diverged about 45,000 years ago, we present evidence for Y chromosomal introgression of Przewalski horses into the gene pool of European domestic horses at least until medieval times. Y1 - 2018 U6 - https://doi.org/10.1126/sciadv.aap9691 SN - 2375-2548 VL - 4 IS - 4 PB - American Assoc. for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Westbury, Michael V. A1 - Hartmann, Stefanie A1 - Barlow, Axel A1 - Wiesel, Ingrid A1 - Leo, Viyanna A1 - Welch, Rebecca A1 - Parker, Daniel M. A1 - Sicks, Florian A1 - Ludwig, Arne A1 - Dalen, Love A1 - Hofreiter, Michael T1 - Extended and continuous decline in effective population size results in low genomic diversity in the world's rarest hyena species, the brown hyena JF - Molecular biology and evolution N2 - Hyenas (family Hyaenidae), as the sister group to cats (family Felidae), represent a deeply diverging branch within the cat-like carnivores (Feliformia). With an estimated population size of <10,000 individuals worldwide, the brown hyena (Parahyaena brunnea) represents the rarest of the four extant hyena species and has been listed as Near Threatened by the IUCN. Here, we report a high-coverage genome from a captive bred brown hyena and both mitochondrial and low-coverage nuclear genomes of 14 wild-caught brown hyena individuals from across southern Africa. We find that brown hyena harbor extremely low genetic diversity on both the mitochondrial and nuclear level, most likely resulting from a continuous and ongoing decline in effective population size that started similar to 1 Ma and dramatically accelerated towards the end of the Pleistocene. Despite the strikingly low genetic diversity, we find no evidence of inbreeding within the captive bred individual and reveal phylogeographic structure, suggesting the existence of several potential subpopulations within the species. KW - evolution KW - hyena KW - genomics KW - population genomics KW - diversity Y1 - 2018 U6 - https://doi.org/10.1093/molbev/msy037 SN - 0737-4038 SN - 1537-1719 VL - 35 IS - 5 SP - 1225 EP - 1237 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Grau, José Horacio A1 - Hackl, Thomas A1 - Koepfli, Klaus-Peter A1 - Hofreiter, Michael T1 - Improving draft genome contiguity with reference-derived in silico mate-pair libraries JF - GigaScience N2 - Background Contiguous genome assemblies are a highly valued biological resource because of the higher number of completely annotated genes and genomic elements that are usable compared to fragmented draft genomes. Nonetheless, contiguity is difficult to obtain if only low coverage data and/or only distantly related reference genome assemblies are available. Findings In order to improve genome contiguity, we have developed Cross-Species Scaffolding—a new pipeline that imports long-range distance information directly into the de novo assembly process by constructing mate-pair libraries in silico. Conclusions We show how genome assembly metrics and gene prediction dramatically improve with our pipeline by assembling two primate genomes solely based on ∼30x coverage of shotgun sequencing data. KW - genome assembly KW - mate-pairs KW - in silico KW - scaffolding KW - shotgun sequencing Y1 - 2018 U6 - https://doi.org/10.1093/gigascience/giy029 SN - 2047-217X VL - 7 IS - 5 SP - 1 EP - 6 PB - Oxford University Press CY - Oxford ER - TY - GEN A1 - Grau, José Horacio A1 - Hackl, Thomas A1 - Koepfli, Klaus-Peter A1 - Hofreiter, Michael T1 - Improving draft genome contiguity with reference-derived in silico mate-pair libraries T2 - GigaScience N2 - Background Contiguous genome assemblies are a highly valued biological resource because of the higher number of completely annotated genes and genomic elements that are usable compared to fragmented draft genomes. Nonetheless, contiguity is difficult to obtain if only low coverage data and/or only distantly related reference genome assemblies are available. Findings In order to improve genome contiguity, we have developed Cross-Species Scaffolding—a new pipeline that imports long-range distance information directly into the de novo assembly process by constructing mate-pair libraries in silico. Conclusions We show how genome assembly metrics and gene prediction dramatically improve with our pipeline by assembling two primate genomes solely based on ∼30x coverage of shotgun sequencing data. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 477 KW - genome assembly KW - mate-pairs KW - in silico KW - scaffolding KW - shotgun sequencing Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419225 ER - TY - JOUR A1 - Hilgers, Leon A1 - Hartmann, Stefanie A1 - Hofreiter, Michael A1 - von Rintelen, Thomas T1 - Novel Genes, Ancient Genes, and Gene Co-Option Contributed o the Genetic Basis of the Radula, a Molluscan Innovation JF - Molecular biology and evolution N2 - The radula is the central foraging organ and apomorphy of the Mollusca. However, in contrast to other innovations, including the mollusk shell, genetic underpinnings of radula formation remain virtually unknown. Here, we present the first radula formative tissue transcriptome using the viviparous freshwater snail Tylomelania sarasinorum and compare it to foot tissue and the shell-building mantle of the same species. We combine differential expression, functional enrichment, and phylostratigraphic analyses to identify both specific and shared genetic underpinnings of the three tissues as well as their dominant functions and evolutionary origins. Gene expression of radula formative tissue is very distinct, but nevertheless more similar to mantle than to foot. Generally, the genetic bases of both radula and shell formation were shaped by novel orchestration of preexisting genes and continuous evolution of novel genes. A significantly increased proportion of radula-specific genes originated since the origin of stem-mollusks, indicating that novel genes were especially important for radula evolution. Genes with radula-specific expression in our study are frequently also expressed during the formation of other lophotrochozoan hard structures, like chaetae (hes1, arx), spicules (gbx), and shells of mollusks (gbx, heph) and brachiopods (heph), suggesting gene co-option for hard structure formation. Finally, a Lophotrochozoa-specific chitin synthase with a myosin motor domain (CS-MD), which is expressed during mollusk and brachiopod shell formation, had radula-specific expression in our study. CS-MD potentially facilitated the construction of complex chitinous structures and points at the potential of molecular novelties to promote the evolution of different morphological innovations. KW - chitin synthase KW - novelty KW - radula KW - RNAseq KW - shell KW - Tylomelania sarasinorum Y1 - 2018 U6 - https://doi.org/10.1093/molbev/msy052 SN - 0737-4038 SN - 1537-1719 VL - 35 IS - 7 SP - 1638 EP - 1652 PB - Oxford Univ. Press CY - Oxford ER - TY - GEN A1 - Barlow, Axel A1 - Sheng, Gui-Lian A1 - Lai, Xu-Long A1 - Hofreiter, Michael A1 - Paijmans, Johanna L. A. T1 - Once lost, twice found: Combined analysis of ancient giant panda sequences characterises extinct clade T2 - Journal of biogeography Y1 - 2018 U6 - https://doi.org/10.1111/jbi.13486 SN - 0305-0270 SN - 1365-2699 VL - 46 IS - 1 SP - 251 EP - 253 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Alberti, Federica A1 - Gonzalez, Javier A1 - Paijmans, Johanna L. A. A1 - Basler, Nikolas A1 - Preick, Michaela A1 - Henneberger, Kirstin A1 - Trinks, Alexandra A1 - Rabeder, Gernot A1 - Conard, Nicholas J. A1 - Muenzel, Susanne C. A1 - Joger, Ulrich A1 - Fritsch, Guido A1 - Hildebrandt, Thomas A1 - Hofreiter, Michael A1 - Barlow, Axel T1 - Optimized DNA sampling of ancient bones using Computed Tomography scans JF - Molecular ecology resources N2 - The prevalence of contaminant microbial DNA in ancient bone samples represents the principal limiting factor for palaeogenomic studies, as it may comprise more than 99% of DNA molecules obtained. Efforts to exclude or reduce this contaminant fraction have been numerous but also variable in their success. Here, we present a simple but highly effective method to increase the relative proportion of endogenous molecules obtained from ancient bones. Using computed tomography (CT) scanning, we identify the densest region of a bone as optimal for sampling. This approach accurately identifies the densest internal regions of petrous bones, which are known to be a source of high-purity ancient DNA. For ancient long bones, CT scans reveal a high-density outermost layer, which has been routinely removed and discarded prior to DNA extraction. For almost all long bones investigated, we find that targeted sampling of this outermost layer provides an increase in endogenous DNA content over that obtained from softer, trabecular bone. This targeted sampling can produce as much as 50-fold increase in the proportion of endogenous DNA, providing a directly proportional reduction in sequencing costs for shotgun sequencing experiments. The observed increases in endogenous DNA proportion are not associated with any reduction in absolute endogenous molecule recovery. Although sampling the outermost layer can result in higher levels of human contamination, some bones were found to have more contamination associated with the internal bone structures. Our method is highly consistent, reproducible and applicable across a wide range of bone types, ages and species. We predict that this discovery will greatly extend the potential to study ancient populations and species in the genomics era. KW - ancient DNA KW - computer tomography KW - palaeogenomics KW - paleogenetics KW - petrous bone Y1 - 2018 U6 - https://doi.org/10.1111/1755-0998.12911 SN - 1755-098X SN - 1755-0998 VL - 18 IS - 6 SP - 1196 EP - 1208 PB - Wiley CY - Hoboken ER -