TY - GEN A1 - Gschwind, Yves J. A1 - Kressig, Reto W. A1 - Lacroix, Andre A1 - Mühlbauer, Thomas A1 - Pfenninger, Barbara A1 - Granacher, Urs T1 - A best practice fall prevention exercise program to improve balance, strength/power, and psychosocial health in older adults BT - study protocol for a randomized controlled trial T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Background: With increasing age neuromuscular deficits (e.g., sarcopenia) may result in impaired physical performance and an increased risk for falls. Prominent intrinsic fall-risk factors are age-related decreases in balance and strength / power performance as well as cognitive decline. Additional studies are needed to develop specifically tailored exercise programs for older adults that can easily be implemented into clinical practice. Thus, the objective of the present trial is to assess the effects of a fall prevention program that was developed by an interdisciplinary expert panel on measures of balance, strength / power, body composition, cognition, psychosocial well-being, and falls self-efficacy in healthy older adults. Additionally, the time-related effects of detraining are tested. Methods/Design: Healthy old people (n = 54) between the age of 65 to 80 years will participate in this trial. The testing protocol comprises tests for the assessment of static / dynamic steady-state balance (i.e., Sharpened Romberg Test, instrumented gait analysis), proactive balance (i.e., Functional Reach Test; Timed Up and Go Test), reactive balance (i.e., perturbation test during bipedal stance; Push and Release Test), strength (i.e., hand grip strength test; Chair Stand Test), and power (i.e., Stair Climb Power Test; countermovement jump). Further, body composition will be analysed using a bioelectrical impedance analysis system. In addition, questionnaires for the assessment of psychosocial (i.e., World Health Organisation Quality of Life Assessment-Bref), cognitive (i.e., Mini Mental State Examination), and fall risk determinants (i.e., Fall Efficacy Scale -International) will be included in the study protocol. Participants will be randomized into two intervention groups or the control / waiting group. After baseline measures, participants in the intervention groups will conduct a 12-week balance and strength / power exercise intervention 3 times per week, with each training session lasting 30 min. (actual training time). One intervention group will complete an extensive supervised training program, while the other intervention group will complete a short version (` 3 times 3') that is home-based and controlled by weekly phone calls. Post-tests will be conducted right after the intervention period. Additionally, detraining effects will be measured 12 weeks after program cessation. The control group / waiting group will not participate in any specific intervention during the experimental period, but will receive the extensive supervised program after the experimental period. Discussion: It is expected that particularly the supervised combination of balance and strength / power training will improve performance in variables of balance, strength / power, body composition, cognitive function, psychosocial well-being, and falls self-efficacy of older adults. In addition, information regarding fall risk assessment, dose-response-relations, detraining effects, and supervision of training will be provided. Further, training-induced health-relevant changes, such as improved performance in activities of daily living, cognitive function, and quality of life, as well as a reduced risk for falls may help to lower costs in the health care system. Finally, practitioners, therapists, and instructors will be provided with a scientifically evaluated feasible, safe, and easy-to-administer exercise program for fall prevention. KW - seniors KW - fall risk assessment KW - resistance training KW - postural stability Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-427104 SN - 1866-8364 IS - 604 ER - TY - JOUR A1 - Gschwind, Yves J. A1 - Kressig, Reto W. A1 - Lacroix, Andre A1 - Mühlbauer, Thomas A1 - Pfenninger, Barbara A1 - Granacher, Urs T1 - A best practice fall prevention exercise program to improve balance, strength/power, and psychosocial health in older adults - study protocol for a randomized controlled trial JF - BMC geriatrics N2 - Background: With increasing age neuromuscular deficits (e.g., sarcopenia) may result in impaired physical performance and an increased risk for falls. Prominent intrinsic fall-risk factors are age-related decreases in balance and strength / power performance as well as cognitive decline. Additional studies are needed to develop specifically tailored exercise programs for older adults that can easily be implemented into clinical practice. Thus, the objective of the present trial is to assess the effects of a fall prevention program that was developed by an interdisciplinary expert panel on measures of balance, strength / power, body composition, cognition, psychosocial well-being, and falls self-efficacy in healthy older adults. Additionally, the time-related effects of detraining are tested. Methods/Design: Healthy old people (n = 54) between the age of 65 to 80 years will participate in this trial. The testing protocol comprises tests for the assessment of static / dynamic steady-state balance (i.e., Sharpened Romberg Test, instrumented gait analysis), proactive balance (i.e., Functional Reach Test; Timed Up and Go Test), reactive balance (i.e., perturbation test during bipedal stance; Push and Release Test), strength (i.e., hand grip strength test; Chair Stand Test), and power (i.e., Stair Climb Power Test; countermovement jump). Further, body composition will be analysed using a bioelectrical impedance analysis system. In addition, questionnaires for the assessment of psychosocial (i.e., World Health Organisation Quality of Life Assessment-Bref), cognitive (i.e., Mini Mental State Examination), and fall risk determinants (i.e., Fall Efficacy Scale -International) will be included in the study protocol. Participants will be randomized into two intervention groups or the control / waiting group. After baseline measures, participants in the intervention groups will conduct a 12-week balance and strength / power exercise intervention 3 times per week, with each training session lasting 30 min. (actual training time). One intervention group will complete an extensive supervised training program, while the other intervention group will complete a short version (` 3 times 3') that is home-based and controlled by weekly phone calls. Post-tests will be conducted right after the intervention period. Additionally, detraining effects will be measured 12 weeks after program cessation. The control group / waiting group will not participate in any specific intervention during the experimental period, but will receive the extensive supervised program after the experimental period. Discussion: It is expected that particularly the supervised combination of balance and strength / power training will improve performance in variables of balance, strength / power, body composition, cognitive function, psychosocial well-being, and falls self-efficacy of older adults. In addition, information regarding fall risk assessment, dose-response-relations, detraining effects, and supervision of training will be provided. Further, training-induced health-relevant changes, such as improved performance in activities of daily living, cognitive function, and quality of life, as well as a reduced risk for falls may help to lower costs in the health care system. Finally, practitioners, therapists, and instructors will be provided with a scientifically evaluated feasible, safe, and easy-to-administer exercise program for fall prevention. KW - Seniors KW - Fall risk assessment KW - Resistance training KW - Postural stability Y1 - 2013 U6 - https://doi.org/10.1186/1471-2318-13-105 SN - 1471-2318 VL - 13 IS - 4 PB - BioMed Central CY - London ER - TY - JOUR A1 - Lesinski, Melanie A1 - Mühlbauer, Thomas A1 - Buesch, Dirk A1 - Granacher, Urs T1 - Acute Effects of Postactivation Potentiation on Strength and Speed Performance in Athletes JF - Sportverletzung, Sportschaden : Grundlagen, Prävention, Rehabilitation N2 - Background: The contractile history of a muscle or a muscle group can result in an acute enhancement of subsequent muscle force output. This phenomenon is referred to as postactivation potentiation (PAP) and it was frequently substantiated in original research manuscripts, systematic literature reviews, and meta-analyses. However, there is a lack in the literature regarding precise dose-response relations. This literature review describes the main determinants of PAP effects and additionally presents the state of the art regarding the acute effects of PAP protocols on measures of strength, power, and speed in subelite and elite athletes of different sport disciplines. Furthermore, an attempt is made to demonstrate evidence-based information concerning the design of effective PAP protocols. Methods: Our literature search included the electronic databases Pubmed, SportDiscus, and Google Scholar (1995 - March 2013). In total, 23 studies met the inclusionary criteria for review. Results: Findings from our literature review indicate that various conditioning activities produce acute PAP effects in subelite and particularly elite athletes. More specifically, conditioning activities that are characterised by multiple sets, moderate to high intensities (60 - 84 % of the one repetition maximum), and rest intervals of 7 - 10 min. following the conditioning activity have the potential to induce short-term improvements in muscle force output and sports performance. Conclusion: It is recommended that subelite and particularly elite athletes from strength, power, and speed disciplines apply specifically tailored conditioning activities during the acute preparation process for competition to induce performance enhancing PAP effects. KW - conditioning stimulus KW - dose-response relationship KW - athletic performance Y1 - 2013 U6 - https://doi.org/10.1055/s-0033-1335414 SN - 0932-0555 SN - 1439-1236 VL - 27 IS - 3 SP - 147 EP - 155 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Mühlbauer, Thomas A1 - Granacher, Urs A1 - Jockel, Björn A1 - Kittel, Réne T1 - Analyse der Muskelaktivität therapeutischer Kletterübungen JF - Sportverletzung, Sportschaden : Grundlagen, Prävention, Rehabilitation N2 - Background: Therapeutic climbing exercises are employed for the treatment of shoulder-and knee-joint injuries. However, there is a void in the literature regarding muscle activation levels during the performance of these exercises. Thus, the purpose of this study was to investigate differences in muscle activation during therapeutic climbing exercises depending on the degree of task difficulty. Participants/Material and Methods: A sample of 10 healthy subjects (sex: 4 females, 6 males; age: 27 +/- 3 years; climbing experience: 5 +/- 3 years) performed three shoulder girdle (i.e., wide shoulder pull, narrow shoulder pull, shoulder row) and two leg extensor (i.e., ascending frontal, ascending sidewards) exercises. Electromyographic (EMG) data were recorded on the right side for eleven muscles and then normalised using the maximum voluntary contractions for each muscle. Results: With increasing task difficulty, muscle activity in all but one muscle (i.e., m. trapezius ascendens) increased significantly for the three shoulder girdle exercises. For the two leg extensor exercises, an increase in task difficulty produced a tendency towards yet not significantly higher muscle activity. Conclusion: Shoulder row was the most effective therapeutic climbing exercise in the ability to activate muscles while showing the highest EMG signals. The absence of significant differences in muscle activity between the two leg extensor exercises indicates their equivalent use for muscle activation during therapy. KW - therapy KW - climbing KW - electromyography KW - shoulder girdle KW - leg extensors KW - musculature Y1 - 2013 U6 - https://doi.org/10.1055/s-0033-1335595 SN - 0932-0555 SN - 1439-1236 VL - 27 IS - 3 SP - 162 EP - 168 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Mühlbauer, Thomas A1 - Gollhofer, Albert A1 - Granacher, Urs T1 - Association of balance, strength, and power measures in young adults JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - Muehlbauer, T, Gollhofer, A, and Granacher, U. Association of balance, strength, and power measures in young adults. J Strength Cond Res 27(3): 582-589, 2013-The purpose of this study was to investigate the relationship between variables of static/dynamic balance, isometric strength, and power. Twenty-seven young healthy adults (mean age: 23 6 4 years) performed measurements of static (unperturbed)/dynamic (perturbed) balance, isometric strength (i.e., maximal isometric torque [MIT]; rate of torque development [RTD] of the plantar flexor), and power (i.e., countermovement jump [CMJ] height and power). No significant associations were found between variables of static and dynamic balance (r = -0.090 to + 0.329, p > 0.05) and between measures of static/dynamic balance and isometric strength (r = +0.041 to +0.387, p > 0.05) and static/dynamic balance and power (r = -0.076 to + 0.218, p > 0.05). Significant positive correlations (r) were detected between variables of power and isometric strength ranging from +0.458 to +0.689 (p, 0.05). Furthermore, simple regression analyses revealed that a 10% increase in mean CMJ height (4.1 cm) was associated with 22.9 N.m and 128.4 N.m.s(-1) better MIT and RTD, respectively. The nonsignificant correlation between static and dynamic balance measures and between static/dynamic balance, isometric strength, and power variables implies that these capacities may be independent of each other and may have to be tested and trained complementarily. KW - static/dynamic postural control KW - maximal isometric torque KW - rate of torque development KW - jump height/power Y1 - 2013 U6 - https://doi.org/10.1097/JSC.0b013e31825c2bab SN - 1064-8011 VL - 27 IS - 3 SP - 582 EP - 589 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Granacher, Urs A1 - Lacroix, Andre A1 - Mühlbauer, Thomas A1 - Röttger, Katrin A1 - Gollhofer, Albert T1 - Effects of core instability strength training on trunk muscle strength, spinal mobility, dynamic balance and functional mobility in older adults JF - Gerontology N2 - Background: Age-related postural misalignment, balance deficits and strength/power losses are associated with impaired functional mobility and an increased risk of falling in seniors. Core instability strength training (CIT) involves exercises that are challenging for both trunk muscles and postural control and may thus have the potential to induce benefits in trunk muscle strength, spinal mobility and balance performance. Objective: The objective was to investigate the effects of CIT on measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility in seniors. Methods: Thirty-two older adults were randomly assigned to an intervention group (INT; n = 16, aged 70.8 +/- 4.1 years) that conducted a 9-week progressive CIT or to a control group (n = 16, aged 70.2 +/- 4.5 years). Maximal isometric strength of the trunk flexors/extensors/lateral flexors (right, left)/rotators (right, left) as well as of spinal mobility in the sagittal and the coronal plane was measured before and after the intervention program. Dynamic balance (i.e. walking 10 m on an optoelectric walkway, the Functional Reach test) and functional mobility (Timed Up and Go test) were additionally tested. Results: Program compliance was excellent with participants of the INT group completing 92% of the training sessions. Significant group x test interactions were found for the maximal isometric strength of the trunk flexors (34%, p < 0.001), extensors (21%, p < 0.001), lateral flexors (right: 48%, p < 0.001; left: 53%, p < 0.001) and left rotators (42%, p < 0.001) in favor of the INT group. Further, training-related improvements were found for spinal mobility in the sagittal (11%, p < 0.001) and coronal plane (11%, p = 0.06) directions, for stride velocity (9%, p < 0.05), the coefficient of variation in stride velocity (31%, p < 0.05), the Functional Reach test (20%, p < 0.05) and the Timed Up and Go test (4%, p < 0.05) in favor of the INT group. Conclusion: CIT proved to be a feasible exercise program for seniors with a high adherence rate. Age-related deficits in measures of trunk muscle strength, spinal mobility, dynamic balance and functional mobility can be mitigated by CIT. This training regimen could be used as an adjunct or even alternative to traditional balance and/or resistance training. KW - Elderly KW - Gait KW - Muscle strength KW - Physical performance KW - Postural balance Y1 - 2013 U6 - https://doi.org/10.1159/000343152 SN - 0304-324X VL - 59 IS - 2 SP - 105 EP - 113 PB - Karger CY - Basel ER - TY - JOUR A1 - Prieske, Olaf A1 - Mühlbauer, Thomas A1 - Müller, Steffen A1 - Krüger, Tom A1 - Kibele, Armin A1 - Behm, David George A1 - Granacher, Urs T1 - Effects of surface instability on neuromuscular performance during drop jumps and landings JF - European journal of applied physiology N2 - The purpose of this study was to investigate the effects of surface instability on measures of performance and activity of leg and trunk muscles during drop jumps and landings. Drop jumps and landings were assessed on a force plate under stable and unstable (balance pad on top of the force plate) conditions. Performance measures (contact time, jump height, peak ground reaction force) and electromyographic (EMG) activity of leg and trunk muscles were tested in 27 subjects (age 23 +/- A 3 years) during different time intervals (preactivation phase, braking phase, push-off phase). The performance of drop jumps under unstable compared to stable conditions produced a decrease in jump height (9 %, p < 0.001, f = 0.92) and an increase in peak ground reaction force (5 %, p = 0.022, f = 0.72), and time for braking phase (12 %, p < 0.001, f = 1.25). When performing drop jumps on unstable compared to stable surfaces, muscle activity was reduced in the lower extremities during the preactivation, braking and push-off phases (11-25 %, p < 0.05, 0.48 a parts per thousand currency sign f a parts per thousand currency sign 1.23). Additionally, when landing on unstable compared to stable conditions, reduced lower limb muscle activities were observed during the preactivation phase (7-60 %, p < 0.05, 0.50 a parts per thousand currency sign f a parts per thousand currency sign 3.62). Trunk muscle activity did not significantly differ between the test conditions for both jumping and landing tasks. The present findings indicate that modified feedforward mechanisms in terms of lower leg muscle activities during the preactivation phase and/or possible alterations in leg muscle activity shortly after ground contact (i.e., braking phase) are responsible for performance decrements during jumping on unstable surfaces. KW - Stretch-shortening cycle KW - Trunk muscle strength KW - Jump height KW - Electromyography Y1 - 2013 U6 - https://doi.org/10.1007/s00421-013-2724-6 SN - 1439-6319 SN - 1439-6327 VL - 113 IS - 12 SP - 2943 EP - 2951 PB - Springer CY - New York ER - TY - JOUR A1 - Mühlbauer, Thomas A1 - Kühnen, Matthias A1 - Granacher, Urs T1 - Inline skating for balance and strength promotion in children during physical education JF - Perceptual & motor skills N2 - Deficiencies in balance and strength are common in children and they may lead to injuries. This study investigated the effects of inline skating exercise on balance and strength performance in healthy children. Twenty 11-12-year-old children (8 girls, 12 boys) were assigned to an intervention (n = 10) or a control (n = 10) group. Participants in the intervention group underwent a 4-week inline skating program (2 times/week, 90 min. each) integrated in their physical education lessons. Balance and strength were measured using the Star Excursion Balance test and the countermovement jump test. As compared to the control group, the intervention group significantly improved balance (17-48%, Cohen's d = 0.00-1.49) and jump height (8%, Cohen's d = 0.48). In children, inline skating is a safe, feasible (90% adherence rate), and effective program that can be integrated in physical education lessons to promote balance and strength. Y1 - 2013 U6 - https://doi.org/10.2466/30.06.PMS.117x29z9 SN - 0031-5125 VL - 117 IS - 3 SP - 665 EP - 681 PB - Sage Publ. CY - Missoula ER - TY - BOOK A1 - Mühlbauer, Thomas A1 - Roth, Ralf A1 - Kibele, Armin A1 - Behm, David George A1 - Granacher, Urs ED - Kröger, Christian ED - Roth, Klaus ED - Haag, Herbert T1 - Krafttraining mit Kindern und Jugendlichen BT - theoretische Grundlagen und praktische Umsetzung T3 - Praxisideen N2 - Dieser Band beschäftigt sich mit den theoretischen Grundlagen und der praktischen Umsetzung von Krafttraining mit Kindern und Jugendlichen. Ausgehend von der Kennzeichnung der körperlichen Situation und der Kraftentwicklung im Kindes- und Jugendalter werden die Effekte von Krafttraining bei Kindern und Jugendlichen aufgezeigt. Hierzu zählen neben Verbesserungen der Kraftausdauer, der Maximal- und Schnellkraft, die Förderung elementarer und sportartspezifischer Fertigkeiten sowie die günstige Beeinflussung gesundheitsrelevanter Faktoren (u.a. Verletzungshäufigkeit, Knochenstatus, kardio-vaskuläre und psycho-soziale Kennwerte). Im Anschluss werden neuronale und muskuläre Mechanismen zur Erklärung der trainingsbedingten Anpassungen beschrieben. Das Kernstück des Buches bildet die Darstellung und Beschreibung vielfältiger Übungsbeispiele für ein Krafttraining an Maschinen, mit Freihanteln, Zusatzgeräten, dem eigenen Körpergewicht und ein Sprungkrafttraining. Hierbei wurden insbesondere Übungen ausgewählt, die sich für den Einsatz im Schul- und Vereinssport eignen. Dieses Buch dient somit Lehrern, Übungsleitern und Trainern, ein zielgerichtetes Krafttraining mit Kindern und Jugendlichen wirkungsvoll und sicher durchzuführen. Y1 - 2013 SN - 978-3-7780-2581-9 IS - 58 PB - Hofmann CY - Schorndorf ER - TY - JOUR A1 - Mühlbauer, Thomas A1 - Besemer, Carmen A1 - Wehrle, Anja A1 - Gollhofer, Albert A1 - Granacher, Urs T1 - Relationship between strength; balance and mobility in children aged 7-10 years JF - Gait & posture N2 - The purpose of this study was to investigate the association between variables of lower extremity muscle strength, balance, and mobility assessed under various task conditions. Twenty-one healthy children (mean age: 9 +/- 1 years) were tested for their isometric and dynamic strength as well as for their steady-state, proactive, and reactive balance and mobility. Balance and mobility tests were conducted under single and dual task conditions. Significant positive correlations were detected between measures of isometric and dynamic leg muscle strength. Hardly any significant associations were observed between variables of strength and balance/mobility and between measures of steady-state, proactive, and reactive balance. Additionally, no significant correlations were detected between balance/mobility tests performed under single and dual task conditions. The predominately non-significant correlations between different balance components and mobility imply that balance and mobility performance is task specific. Further, strength and balance/mobility as well as balance under single and dual task conditions seem to be independent of each other and may have to be tested and trained complementarily. KW - Steady-state balance KW - Proactive/reactive balance KW - Maximal isometric force KW - Jumping height KW - Single/dual tasking KW - Cognitive/motor interference Y1 - 2013 U6 - https://doi.org/10.1016/j.gaitpost.2012.06.022 SN - 0966-6362 VL - 37 IS - 1 SP - 108 EP - 112 PB - Elsevier CY - Clare ER -