TY - JOUR A1 - Christakoudi, Sofa A1 - Tsilidis, Konstantinos K. A1 - Muller, David C. A1 - Freisling, Heinz A1 - Weiderpass, Elisabete A1 - Overvad, Kim A1 - Söderberg, Stefan A1 - Häggström, Christel A1 - Pischon, Tobias A1 - Dahm, Christina C. A1 - Zhang, Jie A1 - Tjønneland, Anne A1 - Schulze, Matthias Bernd T1 - A Body Shape Index (ABSI) achieves better mortality risk stratification than alternative indices of abdominal obesity: results from a large European cohort JF - Scientific Reports N2 - Abdominal and general adiposity are independently associated with mortality, but there is no consensus on how best to assess abdominal adiposity. We compared the ability of alternative waist indices to complement body mass index (BMI) when assessing all-cause mortality. We used data from 352,985 participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) and Cox proportional hazards models adjusted for other risk factors. During a mean follow-up of 16.1 years, 38,178 participants died. Combining in one model BMI and a strongly correlated waist index altered the association patterns with mortality, to a predominantly negative association for BMI and a stronger positive association for the waist index, while combining BMI with the uncorrelated A Body Shape Index (ABSI) preserved the association patterns. Sex-specific cohort-wide quartiles of waist indices correlated with BMI could not separate high-risk from low-risk individuals within underweight (BMI<18.5 kg/m(2)) or obese (BMI30 kg/m(2)) categories, while the highest quartile of ABSI separated 18-39% of the individuals within each BMI category, which had 22-55% higher risk of death. In conclusion, only a waist index independent of BMI by design, such as ABSI, complements BMI and enables efficient risk stratification, which could facilitate personalisation of screening, treatment and monitoring. KW - all-cause mortality KW - anthropometric measures KW - mass index KW - overweight KW - cancer KW - prediction KW - adiposity KW - size Y1 - 2020 VL - 10 IS - 1 PB - Springer Nature CY - Berlin ER - TY - GEN A1 - Christakoudi, Sofa A1 - Tsilidis, Konstantinos K. A1 - Muller, David C. A1 - Freisling, Heinz A1 - Weiderpass, Elisabete A1 - Overvad, Kim A1 - Söderberg, Stefan A1 - Häggström, Christel A1 - Pischon, Tobias A1 - Dahm, Christina C. A1 - Zhang, Jie A1 - Tjønneland, Anne A1 - Schulze, Matthias Bernd T1 - A Body Shape Index (ABSI) achieves better mortality risk stratification than alternative indices of abdominal obesity: results from a large European cohort T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Abdominal and general adiposity are independently associated with mortality, but there is no consensus on how best to assess abdominal adiposity. We compared the ability of alternative waist indices to complement body mass index (BMI) when assessing all-cause mortality. We used data from 352,985 participants in the European Prospective Investigation into Cancer and Nutrition (EPIC) and Cox proportional hazards models adjusted for other risk factors. During a mean follow-up of 16.1 years, 38,178 participants died. Combining in one model BMI and a strongly correlated waist index altered the association patterns with mortality, to a predominantly negative association for BMI and a stronger positive association for the waist index, while combining BMI with the uncorrelated A Body Shape Index (ABSI) preserved the association patterns. Sex-specific cohort-wide quartiles of waist indices correlated with BMI could not separate high-risk from low-risk individuals within underweight (BMI<18.5 kg/m(2)) or obese (BMI30 kg/m(2)) categories, while the highest quartile of ABSI separated 18-39% of the individuals within each BMI category, which had 22-55% higher risk of death. In conclusion, only a waist index independent of BMI by design, such as ABSI, complements BMI and enables efficient risk stratification, which could facilitate personalisation of screening, treatment and monitoring. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1200 KW - all-cause mortality KW - anthropometric measures KW - mass index KW - overweight KW - cancer KW - prediction KW - adiposity KW - size Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-525827 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Jannasch, Franziska A1 - Nickel, Daniela V. A1 - Bergmann, Manuela M. A1 - Schulze, Matthias Bernd T1 - A new evidence-based diet score to capture associations of food consumption and chronic disease risk JF - Nutrients / Molecular Diversity Preservation International (MDPI) N2 - Previously, the attempt to compile German dietary guidelines into a diet score was predominantly not successful with regards to preventing chronic diseases in the EPIC-Potsdam study. Current guidelines were supplemented by the latest evidence from systematic reviews and expert papers published between 2010 and 2020 on the prevention potential of food groups on chronic diseases such as type 2 diabetes, cardiovascular diseases and cancer. A diet score was developed by scoring the food groups according to a recommended low, moderate or high intake. The relative validity and reliability of the diet score, assessed by a food frequency questionnaire, was investigated. The consideration of current evidence resulted in 10 key food groups being preventive of the chronic diseases of interest. They served as components in the diet score and were scored from 0 to 1 point, depending on their recommended intake, resulting in a maximum of 10 points. Both the reliability (r = 0.53) and relative validity (r = 0.43) were deemed sufficient to consider the diet score as a stable construct in future investigations. This new diet score can be a promising tool to investigate dietary intake in etiological research by concentrating on 10 key dietary determinants with evidence-based prevention potential for chronic diseases. KW - diet score KW - dietary guidelines KW - food groups KW - chronic disease KW - type 2 KW - diabetes KW - cardiovascular disease KW - cancer KW - prevention KW - reliability; KW - validity Y1 - 2022 U6 - https://doi.org/10.3390/nu14112359 SN - 2072-6643 VL - 14 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Guo, Ranran A1 - Tian, Ye A1 - Yang, Yueqi A1 - Jiang, Qin A1 - Wang, Yajun A1 - Yang, Wuli T1 - A Yolk-Shell nanoplatform for gene-silencing-enhanced photolytic ablation of cancer JF - Advanced functional materials N2 - Noninvasive near-infrared (NIR) light responsive therapy is a promising cancer treatment modality; however, some inherent drawbacks of conventional phototherapy heavily restrict its application in clinic. Rather than producing heat or reactive oxygen species in conventional NIR treatment, here a multifunctional yolk-shell nanoplatform is proposed that is able to generate microbubbles to destruct cancer cells upon NIR laser irradiation. Besides, the therapeutic effect is highly improved through the coalition of small interfering RNA (siRNA), which is codelivered by the nanoplatform. In vitro experiments demonstrate that siRNA significantly inhibits expression of protective proteins and reduces the tolerance of cancer cells to bubble-induced environmental damage. In this way, higher cytotoxicity is achieved by utilizing the yolk-shell nanoparticles than treated with the same nanoparticles missing siRNA under NIR laser irradiation. After surface modification with polyethylene glycol and transferrin, the yolk-shell nanoparticles can target tumors selectively, as demonstrated from the photoacoustic and ultrasonic imaging in vivo. The yolk-shell nanoplatform shows outstanding tumor regression with minimal side effects under NIR laser irradiation. Therefore, the multifunctional nanoparticles that combining bubble-induced mechanical effect with RNA interference are expected to be an effective NIR light responsive oncotherapy. KW - cancer KW - gene silencing KW - near-infrared absorption KW - photolytic ablation KW - yolk-shell nanoparticles Y1 - 2018 U6 - https://doi.org/10.1002/adfm.201706398 SN - 1616-301X SN - 1616-3028 VL - 28 IS - 14 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Haß, Ulrike A1 - Herpich, Catrin A1 - Norman, Kristina T1 - Anti-Inflammatory Diets and Fatigue T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Accumulating data indicates a link between a pro-inflammatory status and occurrence of chronic disease-related fatigue. The questions are whether the observed inflammatory profile can be (a) improved by anti-inflammatory diets, and (b) if this improvement can in turn be translated into a significant fatigue reduction. The aim of this narrative review was to investigate the effect of anti-inflammatory nutrients, foods, and diets on inflammatory markers and fatigue in various patient populations. Next to observational and epidemiological studies, a total of 21 human trials have been evaluated in this work. Current available research is indicative, rather than evident, regarding the effectiveness of individuals’ use of single nutrients with anti-inflammatory and fatigue-reducing effects. In contrast, clinical studies demonstrate that a balanced diet with whole grains high in fibers, polyphenol-rich vegetables, and omega-3 fatty acid-rich foods might be able to improve disease-related fatigue symptoms. Nonetheless, further research is needed to clarify conflicting results in the literature and substantiate the promising results from human trials on fatigue. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 803 KW - chronic fatigue KW - cancer KW - fatigue reduction diet KW - probiotics KW - polyphenols KW - omega-3 fatty acids KW - anti-inflammatory nutrition KW - cytokines KW - inflammation KW - myalgic encephalomyelitis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-441172 SN - 1866-8372 IS - 803 ER - TY - JOUR A1 - Haß, Ulrike A1 - Herpich, Catrin A1 - Norman, Kristina T1 - Anti-Inflammatory Diets and Fatigue JF - Nutrients N2 - Accumulating data indicates a link between a pro-inflammatory status and occurrence of chronic disease-related fatigue. The questions are whether the observed inflammatory profile can be (a) improved by anti-inflammatory diets, and (b) if this improvement can in turn be translated into a significant fatigue reduction. The aim of this narrative review was to investigate the effect of anti-inflammatory nutrients, foods, and diets on inflammatory markers and fatigue in various patient populations. Next to observational and epidemiological studies, a total of 21 human trials have been evaluated in this work. Current available research is indicative, rather than evident, regarding the effectiveness of individuals’ use of single nutrients with anti-inflammatory and fatigue-reducing effects. In contrast, clinical studies demonstrate that a balanced diet with whole grains high in fibers, polyphenol-rich vegetables, and omega-3 fatty acid-rich foods might be able to improve disease-related fatigue symptoms. Nonetheless, further research is needed to clarify conflicting results in the literature and substantiate the promising results from human trials on fatigue. KW - chronic fatigue KW - cancer KW - fatigue reduction diet KW - probiotics KW - polyphenols KW - omega-3 fatty acids KW - anti-inflammatory nutrition KW - cytokines KW - inflammation KW - myalgic encephalomyelitis Y1 - 2019 U6 - https://doi.org/10.3390/nu11102315 SN - 2072-6643 VL - 11 IS - 10 PB - MDPI CY - Basel ER - TY - GEN A1 - Tzoneva, Rumiana A1 - Stoyanova, Tihomira A1 - Petrich, Annett A1 - Popova, Desislava A1 - Uzunova, Veselina A1 - Albena, Momchilova A1 - Chiantia, Salvatore T1 - Effect of Erufosine on Membrane Lipid Order in Breast Cancer Cell Models T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Alkylphospholipids are a novel class of antineoplastic drugs showing remarkable therapeutic potential. Among them, erufosine (EPC3) is a promising drug for the treatment of several types of tumors. While EPC3 is supposed to exert its function by interacting with lipid membranes, the exact molecular mechanisms involved are not known yet. In this work, we applied a combination of several fluorescence microscopy and analytical chemistry approaches (i.e., scanning fluorescence correlation spectroscopy, line-scan fluorescence correlation spectroscopy, generalized polarization imaging, as well as thin layer and gas chromatography) to quantify the effect of EPC3 in biophysical models of the plasma membrane, as well as in cancer cell lines. Our results indicate that EPC3 affects lipid–lipid interactions in cellular membranes by decreasing lipid packing and increasing membrane disorder and fluidity. As a consequence of these alterations in the lateral organization of lipid bilayers, the diffusive dynamics of membrane proteins are also significantly increased. Taken together, these findings suggest that the mechanism of action of EPC3 could be linked to its effects on fundamental biophysical properties of lipid membranes, as well as on lipid metabolism in cancer cells. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1000 KW - alkylphospholipids KW - fluorescence microscopy KW - fluorescence correlation spectroscopy KW - lipids KW - plasma membrane KW - cancer KW - lipid–lipid interactions KW - membrane microdomains KW - membrane biophysics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-477056 SN - 1866-8372 IS - 1000 ER - TY - JOUR A1 - Tzoneva, Rumiana A1 - Stoyanova, Tihomira A1 - Petrich, Annett A1 - Popova, Desislava A1 - Uzunova, Veselina A1 - Momchilova, Albena A1 - Chiantia, Salvatore T1 - Effect of Erufosine on Membrane Lipid Order in Breast Cancer Cell Models JF - Biomolecules N2 - Alkylphospholipids are a novel class of antineoplastic drugs showing remarkable therapeutic potential. Among them, erufosine (EPC3) is a promising drug for the treatment of several types of tumors. While EPC3 is supposed to exert its function by interacting with lipid membranes, the exact molecular mechanisms involved are not known yet. In this work, we applied a combination of several fluorescence microscopy and analytical chemistry approaches (i.e., scanning fluorescence correlation spectroscopy, line-scan fluorescence correlation spectroscopy, generalized polarization imaging, as well as thin layer and gas chromatography) to quantify the effect of EPC3 in biophysical models of the plasma membrane, as well as in cancer cell lines. Our results indicate that EPC3 affects lipid–lipid interactions in cellular membranes by decreasing lipid packing and increasing membrane disorder and fluidity. As a consequence of these alterations in the lateral organization of lipid bilayers, the diffusive dynamics of membrane proteins are also significantly increased. Taken together, these findings suggest that the mechanism of action of EPC3 could be linked to its effects on fundamental biophysical properties of lipid membranes, as well as on lipid metabolism in cancer cells. KW - alkylphospholipids KW - fluorescence microscopy KW - fluorescence correlation spectroscopy KW - lipids KW - plasma membrane KW - cancer KW - lipid–lipid interactions KW - membrane microdomains KW - membrane biophysics Y1 - 2020 U6 - https://doi.org/10.3390/biom10050802 SN - 2218-273X VL - 10 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Li, Chen A1 - Stoma, Svetlana A1 - Lotta, Luca A. A1 - Warner, Sophie A1 - Albrecht, Eva A1 - Allione, Alessandra A1 - Arp, Pascal P. A1 - Broer, Linda A1 - Buxton, Jessica L. A1 - Boeing, Heiner A1 - Langenberg, Claudia A1 - Codd, Veryan T1 - Genome-wide association analysis in humans links nucleotide metabolism to leukocyte telomere length JF - American Journal of Human Genetics N2 - Leukocyte telomere length (LTL) is a heritable biomarker of genomic aging. In this study, we perform a genome-wide meta-analysis of LTL by pooling densely genotyped and imputed association results across large-scale European-descent studies including up to 78,592 individuals. We identify 49 genomic regions at a false dicovery rate (FDR) < 0.05 threshold and prioritize genes at 31, with five highlighting nucleotide metabolism as an important regulator of LTL. We report six genome-wide significant loci in or near SENP7, MOB1B, CARMIL1 , PRRC2A, TERF2, and RFWD3, and our results support recently identified PARP1, POT1, ATM, and MPHOSPH6 loci. Phenome-wide analyses in >350,000 UK Biobank participants suggest that genetically shorter telomere length increases the risk of hypothyroidism and decreases the risk of thyroid cancer, lymphoma, and a range of proliferative conditions. Our results replicate previously reported associations with increased risk of coronary artery disease and lower risk for multiple cancer types. Our findings substantially expand current knowledge on genes that regulate LTL and their impact on human health and disease. KW - Mendelian randomization KW - risk KW - variants KW - disease KW - cancer KW - loci KW - database KW - genes KW - heart KW - gwas Y1 - 2019 VL - 106 IS - 3 PB - Elsevier CY - Amsterdam ER - TY - GEN A1 - Li, Chen A1 - Stoma, Svetlana A1 - Lotta, Luca A. A1 - Warner, Sophie A1 - Albrecht, Eva A1 - Allione, Alessandra A1 - Arp, Pascal P. A1 - Broer, Linda A1 - Buxton, Jessica L. A1 - Boeing, Heiner A1 - Langenberg, Claudia A1 - Codd, Veryan T1 - Genome-wide association analysis in humans links nucleotide metabolism to leukocyte telomere length T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Leukocyte telomere length (LTL) is a heritable biomarker of genomic aging. In this study, we perform a genome-wide meta-analysis of LTL by pooling densely genotyped and imputed association results across large-scale European-descent studies including up to 78,592 individuals. We identify 49 genomic regions at a false dicovery rate (FDR) < 0.05 threshold and prioritize genes at 31, with five highlighting nucleotide metabolism as an important regulator of LTL. We report six genome-wide significant loci in or near SENP7, MOB1B, CARMIL1 , PRRC2A, TERF2, and RFWD3, and our results support recently identified PARP1, POT1, ATM, and MPHOSPH6 loci. Phenome-wide analyses in >350,000 UK Biobank participants suggest that genetically shorter telomere length increases the risk of hypothyroidism and decreases the risk of thyroid cancer, lymphoma, and a range of proliferative conditions. Our results replicate previously reported associations with increased risk of coronary artery disease and lower risk for multiple cancer types. Our findings substantially expand current knowledge on genes that regulate LTL and their impact on human health and disease. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1205 KW - Mendelian randomization KW - risk KW - variants KW - disease KW - cancer KW - loci KW - database KW - genes KW - heart KW - gwas Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-526843 SN - 1866-8372 IS - 3 ER -