TY - THES A1 - Uflewski, Michal T1 - Characterizing the regulation of proton antiport across the thylakoid membrane N2 - Die Energie, die zum Antrieb photochemischer Reaktionen benötigt wird, stammt aus der Ladungstrennung an der Thylakoidmembran. Aufrgrund des Unterschieds in der Protonenkonzentration zwischen dem Stroma der Chloroplasten und dem Thylakoidlumen wird eine Protonenmotorische Kraft (pmf) erzeugt. Die pmf setzt sich aus dem Protonengradienten (ΔpH) und dem Membranpotential (ΔΨ) zusammen, die gemeinsam die ATP-Synthese antreiben. In der Natur schwankt die Energiemenge, die die Photosynthese antreibt, aufgrund häufiger Änderungen der Lichtintensität. Der Thylakoid-Ionentransport kann den Energiefluss durch einen Photosyntheseapparat an die Lichtverfügbarkeit anpassen, indem er die pmf-Zusammensetzung verändert. Die Dissipation von ΔΨ verringert die Ladungsrekombination am Photosystem II, so dass ein Anstieg der ΔpH-Komponente eine Rückkopplung zur Herabregulierung der Photosynthese auslösen kann. Der durch den K+-Austausch-Antiporter 3 (KEA3) gesteuerte K+/H+-Antiport reduziert den ΔpH-Anteil von pmf und dämpft dadurch das nicht-photochemische Quenching (NPQ). Infolgedessen erhöht sich die Photosyntheseeffizienz beim Übergang zu geringerer Lichtintensität. Ziel dieser Arbeit war es, Antworten auf Fragen zur Regulierung der KEA3-Aktivität und ihrer Rolle in der Pflanzenentwicklung zu finden. Die vorgestellten Daten zeigen, dass KEA3 in Pflanzen, denen der Chloroplasten-ATP-Synthase-Assembly-Faktor CGL160 fehlt und die eine verminderte ATP-Synthase-Aktivität aufweisen, eine zentrale Rolle bei der Regulierung der Photosynthese und des Pflanzenwachstums unter stationären Bedingungen spielt. Das Fehlen von KEA3 in der cgl160-Mutante führt zu einer starken Beeinträchtigung des Wachstums, da die Photosynthese aufgrund des erhöhten pH-abhängigen NPQs und des verringerten Elektronenflusses durch den Cytochrom b6f-Komplex eingeschränkt ist. Die Überexpression von KEA3 in der cgl160-Mutante erhöht die Ladungsrekombination im Photosystem II und fördert die Photosynthese. In Zeiten geringer ATP-Synthase-Aktivität profitieren die Pflanzen also von der KEA3-Aktivität. KEA3 unterliegt einer Dimerisierung über seinen regulatorischen C-Terminus (RCT). Der RCT reagiert auf Veränderungen der Lichtintensität, da die Pflanzen, die KEA3 ohne diese Domäne exprimieren, einen reduzierten Lichtschutzmechanismus bei Lichtintensitätsschwankungen aufweisen. Allerdings fixieren diese Pflanzen während der Photosynthese-Induktionsphase mehr Kohlenstoff als Gegenleistung für einen langfristigen Photoprotektor, was die regulierende Rolle von KEA3 in der Pflanzenentwicklung zeigt. Der KEA3-RCT ist dem Thylakoidstroma zugewandt, so dass seine Regulierung von lichtinduzierten Veränderungen in der Stroma-Umgebung abhängt. Die Regulierung der KEA3-Aktivität überschneidet sich mit den pH-Änderungen im Stroma, die bei Lichtschwankungen auftreten. Es hat sich gezeigt, dass ATP und ADP eine Affinität zum heterolog exprimierten KEA3 RCT haben. Eine solche Wechselwirkung verursacht Konformationsänderungen in der RCT-Struktur. Die Faltung der RCT-Liganden-Interaktion hängt vom pH-Wert der Umgebung ab. Mit einer Kombination aus Bioinformatik und In-vitro-Ansatz wurde die ATP-Bindungsstelle am RCT lokalisiert. Das Einfügen einer Punktmutation in der KEA3-RCT Bindungsstelle in planta führte zu einer Deregulierung der Antiporteraktivität beim Übergang zu wenig Licht. Die in dieser Arbeit vorgestellten Daten ermöglichten es uns, die Rolle von KEA3 bei der Anpassung der Photosynthese umfassender zu bewerten und Modelle zur Regulierung der KEA3-Aktivität während des Übergangs zwischen verschiedenen Lichtintensitäten vorzuschlagen. N2 - The energy required to drive photochemical reactions is derived from charge separation across the thylakoid membrane. As the consequence of difference in proton concentration between chloroplasts stroma and thylakoid lumen, a proton motive force (pmf) is generated. The pmf is composed out of the proton gradient (ΔpH) and membrane potential (ΔΨ), and together they drive the ATP synthesis. In nature, the amount of energy fueling photosynthesis varies due to frequent changes in the light intensity. Thylakoid ion transport can adapt the energy flow through a photosynthetic apparatus to the light availability by adjusting the pmf composition. Dissipation of ΔΨ reduces the charge recombination at the photosystem II, allowing for an increase in ΔpH component to trigger a feedback downregulation of photosynthesis. K+ Exchange Antiporter 3 (KEA3) driven K+/H+ antiport reduces the ΔpH fraction of pmf, thereby dampening a non-photochemical quenching (NPQ). As a result, it increases the photosynthesis efficiency during the transition to lower light intensity. This thesis aimed to find the answers for questions concerning KEA3 activity regulation and its role in plant development. Presented data shows that in plants lacking chloroplast ATP synthase assembly factor CGL160 with decreased ATP synthase activity, KEA3 has a pivotal role in photosynthesis regulation and plant growth during steady-state conditions. Lack of KEA3 in cgl160 mutant results in a strong growth impairment, as photosynthesis is limited due to increased pH-dependent NPQ and decreased electron flow through cytochrome b6f complex. Overexpression of KEA3 in cgl160 mutant increases charge recombination at photosystem II, promoting photosynthesis. Thus, during periods of low ATP synthase activity, plants benefit from KEA3 activity. The KEA3 undergoes dimerization via its regulatory C-terminus (RCT). The RCT responds to changes in light intensity as the plants expressing KEA3 without this domain show reduced photo-protective mechanism in light intensity transients. However, those plants fix more carbon during the photosynthesis induction phase as a trade-off for a long-term photoprotection, showing KEA3 regulatory role in plant development. The KEA3 RCT is facing thylakoid stroma, thus its regulation depends on light-induced changes in the stromal environment. KEA3 activity regulation overlaps with the stromal pH changes occurring during light fluctuations. The ATP and ADP has shown to have an affinity towards heterologously expressed KEA3 RCT. Such interaction causes conformational changes in RCT structure. The fold change of RCT-ligand interaction depends on the environmental pH value. With a combination of bioinformatics and in vitro approach, the ATP binding site at RCT was located. Introduction of binding site point mutation in planta KEA3 RCT resulted in antiporter activity deregulation during transition to low light. Together, the data presented in this thesis allowed us to assess more broadly a KEA3 role in photosynthesis adjustment and propose the models of KEA3 activity regulation throughout transition in light intensity. KW - plant KW - photosynthesis KW - thylakoid KW - ion transport KW - fluctuating light KW - Pflanze KW - Photosynthese KW - Thylakoid KW - Ionentransport KW - schwankendes Licht Y1 - 2021 ER - TY - THES A1 - Rietdorf, Katja T1 - Wirkungen biogener Amine auf die Erregungs-Sekretions-Kopplung in der Speicheldrüse von Periplaneta americana (L.) N2 - In der vorliegenden Arbeit habe ich wichtige Teilmechanismen der Erregungs-Sekretionskopplung in der Speicheldrüse der Schabe Periplaneta americana (L.) untersucht. Die Speicheldrüse ist von dopaminergen und serotonergen Fasern innerviert (Baumann et al., 2002). Beide Transmitter stimulieren eine unterschiedliche Reaktion der Drüse: Dopamin (DA) stimuliert die P-Zellen der Acini und die Ausführgangzellen, während Serotonin (5-HT) die P- und C-Zellen der Acini stimuliert, nicht jedoch die Ausführgangzellen. Der Endspeichel ist nach einer DA-Stimulierung proteinfrei. Dagegen enthält er nach einer 5-HT-Stimulierung Proteine, die von den C-Zellen sezerniert werden (Just & Walz, 1996). Im ersten Teil meiner Arbeit habe ich mittels Kapillarelektrophoretischer Analyse (CE-Analyse) die Elektrolytkonzentrationen im Endspeichel untersucht sowie die Raten der Flüssigkeitssekretion gemessen. Damit wollte ich klären, welche Transporter an der Sekretion des Primärspeichels und an dessen Modifikation beteiligt sind. Ausserdem wollte ich die Rolle der transportaktiven Epithelzellen der Ausführgänge für die Modifikation des Primärspeichels untersuchen. Dafür habe ich einen Vergleich der Elektrolytkonzentrationen im DA- und 5-HT-stimulierten Endspeichel durchgeführt. Der Elektrolytgehalt des DA- und 5-HT-stimulierten Endspeichels unterscheidet sich nicht signifikant voneinander. Er ist nach beiden Stimulierungen hypoosmotisch zum verwendeten Ringer. Die Ausführgangzellen werden durch DA stimuliert und modifizieren den Primärspeichel durch eine netto-Ionenreabsorption. Meine Versuche zeigen jedoch, dass auch die während einer 5-HT-Stimulierung der Drüse unstimulierten Ausführgangzellen den Primärspeichel modifizieren. In einer nachfolgenden Versuchsreihe habe ich den Einfluss von Ouabain, einem Hemmstoff der Na+-K+-ATPase, und Bumetanid, einem Hemmstoff des NKCC, auf die Raten der Flüssigkeitssekretion sowie den Elektrolytgehalt des Endspeichels untersucht. Ich habe gefunden, dass die Aktivität der Na+-K+-ATPase wichtig für die Modifikation des DA-stimulierten Primärspeichels ist. Im Gegensatz dazu ist sie für die Modifikation des 5-HT-stimulierten Primärspeichels nicht von Bedeutung. Bezüglich der Flüssigkeitssekretion habe ich keinen Einfluss der Na+-K+-ATPase-Aktivität auf die DA-stimulierten Sekretionsraten gefunden, dagegen ist die 5-HT-stimulierte Sekretionsrate in Anwesenheit von Ouabain gesteigert. Die Aktivität des NKCC ist für beide sekretorische Prozesse, die Ionen- und die Flüssigkeitssekretion, wichtig. Eine Hemmung des NKCC bewirkt eine signifikante Verringerung der Raten der Flüssigkeitssekretion nach DA- und 5-HT-Stimulierung sowie in beiden Fällen einen signifikanten Abfall der Ionenkonzentrationen im Endspeichel. Im zweiten Teil meiner Arbeit habe ich versucht, Änderungen der intrazellulären Ionenkonzentrationen in den Acinuszellen während einer DA- oder 5-HT-Stimulierung zu messen. Diese Experimente sollten mit der Methode des "ratiometric imaging" durchgeführt werden. Messungen mit dem Ca2+-sensitiven Fluoreszenzfarbstoff Fura-2 zeigten keinen globalen Anstieg in der intrazellulären Ca2+-Konzentration der P-Zellen. Aufgrund von Problemen mit einer schlechten Beladung der Zellen, einer starken und sich während der Stimulierung ändernden Autofluoreszenz der Zellen sowie Änderungen im Zellvolumen wurden keine Messungen mit Na+- und K+-sensitiven Fluoreszenzfarbstoffen durchgeführt. Im dritten Teil dieser Arbeit habe ich die intrazellulären Signalwege untersucht, die zwischen einer 5-HT-Stimulierung der Drüse und der Proteinsekretion vermitteln. Dazu wurde der Proteingehalt im Endspeichel biochemisch mittels eines modifizierten Bradford Assay gemessen. Eine erstellte Dosis-Wirkungskurve zeigt, dass die Rate der Proteinsekretion von der zur Stimulierung verwendeten 5-HT-Konzentration abhängt. In einer Serie von Experimenten habe ich die intrazellulären Konzentrationen von Ca2+, cAMP und / oder cGMP erhöht und anschließend den Proteingehalt im Endspeichel gemessen. Ein Anstieg der intrazellulären Ca2+-Konzentration aktiviert nur eine geringe Rate der Proteinsekretion. Dagegen kann die Steigerung der intrazellulären cAMP-Konzentration eine stärkere Proteinsekretion aktivieren, die sich nicht signifikant von der nach 5-HT-Stimulierung unterscheidet. Die cAMP-stimulierte Proteinsekretion kann durch gleichzeitige Erhöhung der intrazellulären Ca2+-Konzentration weiter gesteigert werden. Dagegen aktivierte eine Erhöhung der intrazellulären cGMP-Konzentration die Proteinsekretion nicht. Aufgrund dieser Ergebnisse postuliere ich die Existenz eines die Adenylatcyclase aktivierenden 5-HT-Rezeptors in der Basolateralmembran der C-Zellen. N2 - The aim of this PhD-work was to investigate major mechanisms of excitation-secretion coupling in the salivary gland of the cockroach Periplaneta americana (L.). This salivary gland is innervated by dopaminergic and serotonergic fibres (Baumann et al., 2002). The two transmitters stimulate different processes in the gland: Dopamine (DA) stimulates the p-cells of the acini and the salivary duct cells, whereas 5-HT (serotonin) activates the p- and the c-cells of the acini, but not the salivary duct cells. Final saliva is completely protein-free after dopamine stimulation. It contains proteins, which are secreted by the c-cells of the acini, after a 5-HT-stimulation (Just & Walz, 1996). In the first part of my work I measured the electrolytic composition of the final saliva by capillary electrophoretic analysis and measured the rates of fluid secretion, in order to answer the following questions: 1.) Which transporters affect the production of primary saliva and its modification? 2.) What is the function of the transport-active salivary duct cells for the modification of the primary saliva? Electrolytic composition of the DA- and 5-HT-stimulated final saliva is not significantly different from each other, and is hypoosmotic to the Ringer used. Salivary duct cells are stimulated by DA and modify the primary saliva by a netto ion-reabsorption. My experiments also show that the duct cells, which are unstimulated during a 5-HT-stimulation of the gland, modify the primary saliva. In the next series of experiments I investigated the effects of ouabain, an inhibitor of the Na+-K+-ATPase, and bumetanide, an inhibitor of the NKCC on the rates of fluid secretion and the electrolytic composition of the final saliva. I found, that the activity of the Na+-K+-ATPase is important for the modification of DA-stimulated primary saliva during its flow through the stimulated duct system. In contrast, it is not important for modification of the 5-HT-stimulated primary saliva. Inhibition of the Na+-K+-ATPase does not affect rates of DA-stimulated fluid secretion, but it increases the rates of 5-HT-stimulated fluid secretion. Activity of the NKCC is important for both secretory processes: the ion and the fluid secretion. Inhibition of the NKCC results in a significant drop in the rates of fluid secretion after DA- and 5-HT-stimulation, as well as a drop in electrolytic concentrations in the saliva. In the second part of my work, I tried to measure changes in the intracellular ionic concentrations (Ca2+, Na+, and K+) within the acinar cells during a DA- or 5-HT-stimulation. The experiments should be performed by ratiometric imaging. Measurements with the Ca2+-sensitive dye Fura-2 did not show any global increase in the intracellular Ca2+-concentration in the p-cells of the acini. Problems concerning a bad loading of the cells, a strong autofluorescence which changed during the time course of the stimulation, as well as changes in the cell volume were the reason, that no measurements using Na+- or K+-sensitive dyes were performed. In the third part of my work I investigated the intracellular signalling pathways, which activate protein secretion after 5-HT-stimulation of the gland. A modified Bradford Assay was used for measuring the protein content in the final saliva. In a dose-response curve I showed that rates of protein secretion are dependent on the 5-HT-concentrations used to stimulate the glands. In another set of experiments I increased the intracellular concentrations of Ca2+, cAMP and / or cGMP, and measured the protein content in the final saliva. An increase in the intracellular Ca2+-concentration activates only a low rate of protein secretion. After an increase in the intracellular cAMP-concentration a much higher rate of protein secretion can be activated, which is not significantly different from the 5-HT stimulated rate of protein secretion. The cAMP-stimulated protein secretion can be further increased by a simultaneous rise in the intracellular Ca2+-concentration. In contrast, cGMP does not activate protein secretion. Therefore I propose the expression of an adenylyl cyclase activating 5-HT-receptor in the basolateral membrane of the protein secreting c-cells. KW - Periplaneta KW - Speicheldrüse KW - Speichel KW - ionale Zusammensetzung KW - Ionentransport KW - Proteinsekretion KW - second messenger KW - Periplaneta KW - salivary gland KW - saliva KW - ionic composition KW - ion transport KW - protein secretion KW - second messenger Y1 - 2003 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0000878 ER -