TY - JOUR A1 - Henschke, Jakob A1 - Zecher, Mahli Megan A1 - Mayer, Frank A1 - Engel, Tilman T1 - Contralateral repeated bout effect following preconditioning exercises BT - a systematic review JF - Sport sciences for health N2 - Background Recent studies indicate the existence of a repeated bout effect on the contralateral untrained limb following eccentric and isometric contractions. Aims This review aims to summarize the evidence for magnitude, duration and differences of this effect following isometric and eccentric preconditioning exercises. Methods Medline, Cochrane, and Web of science were searched from January 1971 until September 2020. Randomized controlled trials, case-control studies and cross-sectional studies were identified by combining keywords and synonyms (e.g., "contralateral", "exercise", "preconditioning", "protective effect"). At least two of the following outcome parameters were mandatory for study inclusion: strength, muscle soreness, muscle swelling, limb circumference, inflammatory blood markers or protective index (relative change of aforementioned measures). Results After identifying 1979 articles, 13 studies were included. Most investigations examined elbow flexors and utilized eccentric isokinetic protocols to induce the contralateral repeated bout effect. The magnitude of protection was observed in four studies, smaller values of the contralateral when compared to the ipsilateral repeated bout effect were noted in three studies. The potential mechanism is thought to be of neural central nature since no differences in peripheral muscle activity were observed. Time course was examined in three investigations. One study showed a smaller protective effect following isometric preconditioning when compared to eccentric preconditioning exercises. Conclusions The contralateral repeated bout effect demonstrates a smaller magnitude and lasts shorter than the ipsilateral repeated bout effect. Future research should incorporate long-term controlled trials including larger populations to identify central mechanisms. This knowledge should be used in clinical practice to prepare immobilized limbs prospectively for an incremental load. KW - musculoskeletal physiological phenomena KW - muscle damage KW - adaptation KW - Crossover KW - muscle soreness KW - isometric contraction Y1 - 2021 U6 - https://doi.org/10.1007/s11332-021-00804-0 SN - 1824-7490 SN - 1825-1234 VL - 18 IS - 1 SP - 1 EP - 10 PB - Soringer Italia CY - Milan ER - TY - JOUR A1 - Behm, David G. A1 - Alizadeh, Shahab A1 - Drury, Ben A1 - Granacher, Urs A1 - Moran, Jason T1 - Non-local acute stretching effects on strength performance in healthy young adults JF - European journal of applied physiology N2 - Background Static stretching (SS) can impair performance and increase range of motion of a non-exercised or non-stretched muscle, respectively. An underdeveloped research area is the effect of unilateral stretching on non-local force output. Objective The objective of this review was to describe the effects of unilateral SS on contralateral, non-stretched, muscle force and identify gaps in the literature. Methods A systematic literature search following preferred reporting items for systematic review and meta-analyses Protocols guidelines was performed according to prescribed inclusion and exclusion criteria. Weighted means and ranges highlighted the non-local force output response to unilateral stretching. The physiotherapy evidence database scale was used to assess study risk of bias and methodological quality. Results Unilateral stretching protocols from six studies involved 6.3 +/- 2 repetitions of 36.3 +/- 7.4 s with 19.3 +/- 5.7 s recovery between stretches. The mean stretch-induced force deficits exhibited small magnitude effect sizes for both the stretched (-6.7 +/- 7.1%, d = -0.35: 0.01 to -1.8) and contralateral, non-stretched, muscles (-4.0 +/- 4.9%, d = , 0.22: 0.08 to 1.1). Control measures exhibited trivial deficits. Conclusion The limited literature examining non-local effects of prolonged SS revealed that both the stretched and contralateral, non-stretched, limbs of young adults demonstrate small magnitude force deficits. However, the frequency of studies with these effects were similar with three measures demonstrating deficits, and four measures showing trivial changes. These results highlight the possible global (non-local) effects of prolonged SS. Further research should investigate effects of lower intensity stretching, upper versus lower body stretching, different age groups, incorporate full warm-ups, and identify predominant mechanisms among others. KW - Flexibility KW - Power KW - Crossover KW - Fatigue KW - Mental fatigue KW - Neural inhibition Y1 - 2021 U6 - https://doi.org/10.1007/s00421-021-04657-w SN - 1439-6319 SN - 1439-6327 VL - 121 IS - 6 SP - 1517 EP - 1529 PB - Springer CY - Berlin ; Heidelberg ER - TY - JOUR A1 - Grabow, Lena A1 - Young, James D. A1 - Byrne, Jeannette M. A1 - Granacher, Urs A1 - Behm, David George T1 - Unilateral Rolling of the Foot did not Affect Non-Local Range of Motion or Balance JF - Journal of sports science & medicine N2 - Non-local or crossover (contralateral and non-stretched muscles) increases in range-of-motion (ROM) and balance have been reported following rolling of quadriceps, hamstrings and plantar flexors. Since there is limited information regarding plantar sole (foot) rolling effects, the objectives of this study were to determine if unilateral foot rolling would affect ipsilateral and contralateral measures of ROM and balance in young healthy adults. A randomized within-subject design was to examine non-local effects of unilateral foot rolling on ipsilateral and contralateral limb ankle dorsiflexion ROM and a modified sit-and-reachtest (SRT). Static balance was also tested during a 30 s single leg stance test. Twelve participants performed three bouts of 60 s unilateral plantar sole rolling using a roller on the dominant foot with 60 s rest intervals between sets. ROM and balance measures were assessed in separate sessions at pre-intervention, immediately and 10 minutes post-intervention. To evaluate repeated measures effects, two SRT pre-tests were implemented. Results demonstrated that the second pre-test SRT was 6.6% higher than the first pre-test (p = 0.009, d = 1.91). There were no statistically significant effects of foot rolling on any measures immediately or 10 min post-test. To conclude, unilateral foot rolling did not produce statistically significant increases in ipsilateral or contralateral dorsiflexion or SRT ROM nor did it affect postural sway. Our statistically non-significant findings might be attributed to a lower degree of roller-induced afferent stimulation due to the smaller volume of myofascia and muscle compared to prior studies. Furthermore, ROM results from studies utilizing a single pre-test without a sufficient warm-up should be viewed critically. KW - Crossover KW - flexibility KW - postural sway KW - myofascial KW - self massage Y1 - 2017 SN - 1303-2968 VL - 16 SP - 209 EP - 218 PB - Department of Sports Medicine, Medical Faculty of Uludag University CY - Bursa ER -