TY - GEN A1 - Ziegler, Joceline A1 - Pfitzner, Bjarne A1 - Schulz, Heinrich A1 - Saalbach, Axel A1 - Arnrich, Bert T1 - Defending against Reconstruction Attacks through Differentially Private Federated Learning for Classification of Heterogeneous Chest X-ray Data T2 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät N2 - Privacy regulations and the physical distribution of heterogeneous data are often primary concerns for the development of deep learning models in a medical context. This paper evaluates the feasibility of differentially private federated learning for chest X-ray classification as a defense against data privacy attacks. To the best of our knowledge, we are the first to directly compare the impact of differentially private training on two different neural network architectures, DenseNet121 and ResNet50. Extending the federated learning environments previously analyzed in terms of privacy, we simulated a heterogeneous and imbalanced federated setting by distributing images from the public CheXpert and Mendeley chest X-ray datasets unevenly among 36 clients. Both non-private baseline models achieved an area under the receiver operating characteristic curve (AUC) of 0.940.94 on the binary classification task of detecting the presence of a medical finding. We demonstrate that both model architectures are vulnerable to privacy violation by applying image reconstruction attacks to local model updates from individual clients. The attack was particularly successful during later training stages. To mitigate the risk of a privacy breach, we integrated Rényi differential privacy with a Gaussian noise mechanism into local model training. We evaluate model performance and attack vulnerability for privacy budgets ε∈{1,3,6,10}�∈{1,3,6,10}. The DenseNet121 achieved the best utility-privacy trade-off with an AUC of 0.940.94 for ε=6�=6. Model performance deteriorated slightly for individual clients compared to the non-private baseline. The ResNet50 only reached an AUC of 0.760.76 in the same privacy setting. Its performance was inferior to that of the DenseNet121 for all considered privacy constraints, suggesting that the DenseNet121 architecture is more robust to differentially private training. T3 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät - 14 KW - federated learning KW - privacy and security KW - privacy attack KW - X-ray Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-581322 IS - 14 ER - TY - GEN A1 - Zhou, Lin A1 - Fischer, Eric A1 - Tunca, Can A1 - Brahms, Clemens Markus A1 - Ersoy, Cem A1 - Granacher, Urs A1 - Arnrich, Bert T1 - How We Found Our IMU BT - Guidelines to IMU Selection and a Comparison of Seven IMUs for Pervasive Healthcare Applications T2 - Postprints der Universität Potsdam : Reihe der Digital Engineering Fakultät N2 - Inertial measurement units (IMUs) are commonly used for localization or movement tracking in pervasive healthcare-related studies, and gait analysis is one of the most often studied topics using IMUs. The increasing variety of commercially available IMU devices offers convenience by combining the sensor modalities and simplifies the data collection procedures. However, selecting the most suitable IMU device for a certain use case is increasingly challenging. In this study, guidelines for IMU selection are proposed. In particular, seven IMUs were compared in terms of their specifications, data collection procedures, and raw data quality. Data collected from the IMUs were then analyzed by a gait analysis algorithm. The difference in accuracy of the calculated gait parameters between the IMUs could be used to retrace the issues in raw data, such as acceleration range or sensor calibration. Based on our algorithm, we were able to identify the best-suited IMUs for our needs. This study provides an overview of how to select the IMUs based on the area of study with concrete examples, and gives insights into the features of seven commercial IMUs using real data. T3 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät - 2 KW - inertial measurement unit KW - pervasive healthcare KW - gait analysis KW - comparison of devices Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-481628 IS - 2 ER - TY - GEN A1 - Zenner, Alexander M. A1 - Böttinger, Erwin A1 - Konigorski, Stefan T1 - StudyMe BT - a new mobile app for user-centric N-of-1 trials T2 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät N2 - N-of-1 trials are multi-crossover self-experiments that allow individuals to systematically evaluate the effect of interventions on their personal health goals. Although several tools for N-of-1 trials exist, there is a gap in supporting non-experts in conducting their own user-centric trials. In this study, we present StudyMe, an open-source mobile application that is freely available from https://play.google.com/store/apps/details?id=health.studyu.me and offers users flexibility and guidance in configuring every component of their trials. We also present research that informed the development of StudyMe, focusing on trial creation. Through an initial survey with 272 participants, we learned that individuals are interested in a variety of personal health aspects and have unique ideas on how to improve them. In an iterative, user-centered development process with intermediate user tests, we developed StudyMe that features an educational part to communicate N-of-1 trial concepts. A final empirical evaluation of StudyMe showed that all participants were able to create their own trials successfully using StudyMe and the app achieved a very good usability rating. Our findings suggest that StudyMe provides a significant step towards enabling individuals to apply a systematic science-oriented approach to personalize health-related interventions and behavior modifications in their everyday lives. T3 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät - 18 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-589763 IS - 18 ER - TY - GEN A1 - Trautmann, Justin A1 - Zhou, Lin A1 - Brahms, Clemens Markus A1 - Tunca, Can A1 - Ersoy, Cem A1 - Granacher, Urs A1 - Arnrich, Bert T1 - TRIPOD - A Treadmill Walking Dataset with IMU, Pressure-distribution and Photoelectric Data for Gait Analysis T2 - Postprints der Universität Potsdam : Reihe der Digital Engineering Fakultät N2 - Inertial measurement units (IMUs) enable easy to operate and low-cost data recording for gait analysis. When combined with treadmill walking, a large number of steps can be collected in a controlled environment without the need of a dedicated gait analysis laboratory. In order to evaluate existing and novel IMU-based gait analysis algorithms for treadmill walking, a reference dataset that includes IMU data as well as reliable ground truth measurements for multiple participants and walking speeds is needed. This article provides a reference dataset consisting of 15 healthy young adults who walked on a treadmill at three different speeds. Data were acquired using seven IMUs placed on the lower body, two different reference systems (Zebris FDMT-HQ and OptoGait), and two RGB cameras. Additionally, in order to validate an existing IMU-based gait analysis algorithm using the dataset, an adaptable modular data analysis pipeline was built. Our results show agreement between the pressure-sensitive Zebris and the photoelectric OptoGait system (r = 0.99), demonstrating the quality of our reference data. As a use case, the performance of an algorithm originally designed for overground walking was tested on treadmill data using the data pipeline. The accuracy of stride length and stride time estimations was comparable to that reported in other studies with overground data, indicating that the algorithm is equally applicable to treadmill data. The Python source code of the data pipeline is publicly available, and the dataset will be provided by the authors upon request, enabling future evaluations of IMU gait analysis algorithms without the need of recording new data. T3 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät - 6 KW - inertial measurement unit KW - gait analysis algorithm KW - OptoGait KW - Zebris KW - data pipeline KW - public dataset Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-522027 IS - 6 ER - TY - GEN A1 - Söchting, Maximilian A1 - Trapp, Matthias T1 - Controlling image-stylization techniques using eye tracking T2 - Postprints der Universität Potsdam : Reihe der Digital Engineering Fakultät N2 - With the spread of smart phones capable of taking high-resolution photos and the development of high-speed mobile data infrastructure, digital visual media is becoming one of the most important forms of modern communication. With this development, however, also comes a devaluation of images as a media form with the focus becoming the frequency at which visual content is generated instead of the quality of the content. In this work, an interactive system using image-abstraction techniques and an eye tracking sensor is presented, which allows users to experience diverting and dynamic artworks that react to their eye movement. The underlying modular architecture enables a variety of different interaction techniques that share common design principles, making the interface as intuitive as possible. The resulting experience allows users to experience a game-like interaction in which they aim for a reward, the artwork, while being held under constraints, e.g., not blinking. The co nscious eye movements that are required by some interaction techniques hint an interesting, possible future extension for this work into the field of relaxation exercises and concentration training. T3 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät - 7 KW - eye-tracking KW - image abstraction KW - image processing KW - artistic image stylization KW - interactive media Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-524717 IS - 7 ER - TY - GEN A1 - Serth, Sebastian A1 - Staubitz, Thomas A1 - van Elten, Martin A1 - Meinel, Christoph ED - Gamage, Dilrukshi T1 - Measuring the effects of course modularizations in online courses for life-long learners T2 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät N2 - Many participants in Massive Open Online Courses are full-time employees seeking greater flexibility in their time commitment and the available learning paths. We recently addressed these requirements by splitting up our 6-week courses into three 2-week modules followed by a separate exam. Modularizing courses offers many advantages: Shorter modules are more sustainable and can be combined, reused, and incorporated into learning paths more easily. Time flexibility for learners is also improved as exams can now be offered multiple times per year, while the learning content is available independently. In this article, we answer the question of which impact this modularization has on key learning metrics, such as course completion rates, learning success, and no-show rates. Furthermore, we investigate the influence of longer breaks between modules on these metrics. According to our analysis, course modules facilitate more selective learning behaviors that encourage learners to focus on topics they are the most interested in. At the same time, participation in overarching exams across all modules seems to be less appealing compared to an integrated exam of a 6-week course. While breaks between the modules increase the distinctive appearance of individual modules, a break before the final exam further reduces initial interest in the exams. We further reveal that participation in self-paced courses as a preparation for the final exam is unlikely to attract new learners to the course offerings, even though learners' performance is comparable to instructor-paced courses. The results of our long-term study on course modularization provide a solid foundation for future research and enable educators to make informed decisions about the design of their courses. T3 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät - 17 KW - Massive Open Online Course (MOOC) KW - course design KW - modularization KW - learning path KW - flexibility KW - e-learning KW - assignments KW - self-paced learning Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-589182 IS - 17 ER - TY - GEN A1 - Scheibel, Willy A1 - Trapp, Matthias A1 - Limberger, Daniel A1 - Döllner, Jürgen Roland Friedrich T1 - A taxonomy of treemap visualization techniques T2 - Postprints der Universität Potsdam : Reihe der Digital Engineering Fakultät N2 - A treemap is a visualization that has been specifically designed to facilitate the exploration of tree-structured data and, more general, hierarchically structured data. The family of visualization techniques that use a visual metaphor for parent-child relationships based “on the property of containment” (Johnson, 1993) is commonly referred to as treemaps. However, as the number of variations of treemaps grows, it becomes increasingly important to distinguish clearly between techniques and their specific characteristics. This paper proposes to discern between Space-filling Treemap TS, Containment Treemap TC, Implicit Edge Representation Tree TIE, and Mapped Tree TMT for classification of hierarchy visualization techniques and highlights their respective properties. This taxonomy is created as a hyponymy, i.e., its classes have an is-a relationship to one another: TS TC TIE TMT. With this proposal, we intend to stimulate a discussion on a more unambiguous classification of treemaps and, furthermore, broaden what is understood by the concept of treemap itself. T3 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät - 8 KW - treemaps KW - taxonomy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-524693 IS - 8 ER - TY - GEN A1 - Richly, Keven A1 - Brauer, Janos A1 - Schlosser, Rainer T1 - Predicting location probabilities of drivers to improved dispatch decisions of transportation network companies based on trajectory data T2 - Postprints der Universität Potsdam : Reihe der Digital Engineering Fakultät N2 - The demand for peer-to-peer ridesharing services increased over the last years rapidly. To cost-efficiently dispatch orders and communicate accurate pick-up times is challenging as the current location of each available driver is not exactly known since observed locations can be outdated for several seconds. The developed trajectory visualization tool enables transportation network companies to analyze dispatch processes and determine the causes of unexpected delays. As dispatching algorithms are based on the accuracy of arrival time predictions, we account for factors like noise, sample rate, technical and economic limitations as well as the duration of the entire process as they have an impact on the accuracy of spatio-temporal data. To improve dispatching strategies, we propose a prediction approach that provides a probability distribution for a driver’s future locations based on patterns observed in past trajectories. We demonstrate the capabilities of our prediction results to ( i) avoid critical delays, (ii) to estimate waiting times with higher confidence, and (iii) to enable risk considerations in dispatching strategies. T3 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät - 9 KW - trajectory data KW - location prediction algorithm KW - Peer-to-Peer ridesharing KW - transport network companies KW - risk-aware dispatching Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-524040 IS - 9 ER - TY - GEN A1 - Perscheid, Cindy T1 - Comprior: facilitating the implementation and automated benchmarking of prior knowledge-based feature selection approaches on gene expression data sets T2 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät N2 - Background Reproducible benchmarking is important for assessing the effectiveness of novel feature selection approaches applied on gene expression data, especially for prior knowledge approaches that incorporate biological information from online knowledge bases. However, no full-fledged benchmarking system exists that is extensible, provides built-in feature selection approaches, and a comprehensive result assessment encompassing classification performance, robustness, and biological relevance. Moreover, the particular needs of prior knowledge feature selection approaches, i.e. uniform access to knowledge bases, are not addressed. As a consequence, prior knowledge approaches are not evaluated amongst each other, leaving open questions regarding their effectiveness. Results We present the Comprior benchmark tool, which facilitates the rapid development and effortless benchmarking of feature selection approaches, with a special focus on prior knowledge approaches. Comprior is extensible by custom approaches, offers built-in standard feature selection approaches, enables uniform access to multiple knowledge bases, and provides a customizable evaluation infrastructure to compare multiple feature selection approaches regarding their classification performance, robustness, runtime, and biological relevance. Conclusion Comprior allows reproducible benchmarking especially of prior knowledge approaches, which facilitates their applicability and for the first time enables a comprehensive assessment of their effectiveness T3 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät - 010 KW - Feature selection KW - Prior knowledge KW - Gene expression KW - Reproducible benchmarking Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-548943 SP - 1 EP - 15 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - GEN A1 - Monti, Remo A1 - Rautenstrauch, Pia A1 - Ghanbari, Mahsa A1 - Rani James, Alva A1 - Kirchler, Matthias A1 - Ohler, Uwe A1 - Konigorski, Stefan A1 - Lippert, Christoph T1 - Identifying interpretable gene-biomarker associations with functionally informed kernel-based tests in 190,000 exomes T2 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät N2 - Here we present an exome-wide rare genetic variant association study for 30 blood biomarkers in 191,971 individuals in the UK Biobank. We compare gene- based association tests for separate functional variant categories to increase interpretability and identify 193 significant gene-biomarker associations. Genes associated with biomarkers were ~ 4.5-fold enriched for conferring Mendelian disorders. In addition to performing weighted gene-based variant collapsing tests, we design and apply variant-category-specific kernel-based tests that integrate quantitative functional variant effect predictions for mis- sense variants, splicing and the binding of RNA-binding proteins. For these tests, we present a computationally efficient combination of the likelihood- ratio and score tests that found 36% more associations than the score test alone while also controlling the type-1 error. Kernel-based tests identified 13% more associations than their gene-based collapsing counterparts and had advantages in the presence of gain of function missense variants. We introduce local collapsing by amino acid position for missense variants and use it to interpret associations and identify potential novel gain of function variants in PIEZO1. Our results show the benefits of investigating different functional mechanisms when performing rare-variant association tests, and demonstrate pervasive rare-variant contribution to biomarker variability. T3 - Zweitveröffentlichungen der Universität Potsdam : Reihe der Digital Engineering Fakultät - 16 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-586078 IS - 16 ER -