TY - JOUR A1 - Andres, Dorothee A1 - Baxa, Ulrich A1 - Hanke, Christin A1 - Seckler, Robert A1 - Barbirz, Stefanie T1 - Carbohydrate binding of Salmonella phage P22 tailspike protein and its role during host cell infection N2 - TSPs (tailspike proteins) are essential infection organelles of bacteriophage P22. Upon infection, P22TSP binds to and cleaves the O-antigen moiety of the LPS (lipopolysaccharide) of its Salmonella host To elucidate the role of TSP during infection, we have studied binding to oligosaccharides and polysaccharides of Salmonella enteric Typhimurium and Enteritidis in vitro. P22TSP is a trimeric beta-helical protein with a carbohydrate-binding site on each subunit. Octasaccharide O-antigen fragments bind to P22TSP with micromolar dissociation constants. Moreover, P22TSP is an endorhamnosidase and cleaves the host O-antigen. Catalytic residues lie at the periphery of the high-affinity binding site, which enables unproductive binding modes, resulting in slow hydrolysis. However, the role of this hydrolysis function during infection remains unclear. Binding of polysaccharide to P22TSP is of high avidity with slow dissociation rates when compared with oligosaccharides. In vivo, the infection of Salmonella with phage P22 can be completely inhibited by the addition of LPS, indicating that binding of phage to its host via TSP is an essential step for infection. Y1 - 2010 UR - http://www.biochemsoctrans.org/ U6 - https://doi.org/10.1042/Bst0381386 SN - 0300-5127 ER - TY - JOUR A1 - Andres, Dorothee A1 - Hanke, Christin A1 - Baxa, Ulrich A1 - Seul, Anait A1 - Barbirz, Stefanie A1 - Seckler, Robert T1 - Tailspike interactions with lipopolysaccharide effect DNA ejection from phage P22 particles in vitro N2 - Initial attachment of bacteriophage P22 to the Salmonella host cell is known to be mediated by interactions between lipopolysaccharide (LPS) and the phage tailspike proteins (TSP), but the events that subsequently lead to DNA injection into the bacterium are unknown. We used the binding of a fluorescent dye and DNA accessibility to DNase and restriction enzymes to analyze DNA ejection from phage particles in vitro. Ejection was specifically triggered by aggregates of purified Salmonella LPS but not by LPS with different O-antigen structure, by lipid A, phospholipids, or soluble O-antigen polysaccharide. This suggests that P22 does not use a secondary receptor at the bacterial outer membrane surface. Using phage particles reconstituted with purified mutant TSP in vitro, we found that the endorhamnosidase activity of TSP degrading the O-antigen polysaccharide was required prior to DNA ejection in vitro and DNA replication in vivo. If, however, LPS was pre-digested with soluble TSP, it was no longer able to trigger DNA ejection, even though it still contained five O-antigen oligosaccharide repeats. Together with known data on the structure of LPS and phage P22, our results suggest a molecular model. In this model, tail-spikes position the phage particles on the outer membrane surface for DNA ejection. They force gp26, the central needle and plug protein of the phage tail machine, through the core oligosaccharide layer and into the hydrophobic portion of the outer membrane, leading to refolding of the gp26 lazo-domain, release of the plug, and ejection of DNA and pilot proteins. Y1 - 2010 UR - http://www.jbc.org/ U6 - https://doi.org/10.1074/jbc.M110.169003 SN - 0021-9258 ER -