TY - JOUR A1 - Dolk, Thomas A1 - Hommel, Bernhard A1 - Colzato, Lorenza S. A1 - Schuetz-Bosbach, Simone A1 - Prinz, Wolfgang A1 - Liepelt, Roman T1 - The joint Simon effect a review and theoretical integration JF - Frontiers in psychology KW - joint action KW - joint Simon effect KW - social cognition KW - stimulus-response compatibility KW - referential coding KW - review Y1 - 2014 U6 - https://doi.org/10.3389/fpsyg.2014.00974 SN - 1664-1078 VL - 5 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Fiedler, K. A1 - Kliegl, Reinhold A1 - Lindenberger, Ulman A1 - Mausfeld, Reinhold A1 - Mumendy, A. A1 - Prinz, Wolfgang T1 - Psychologie im 21. Jahrhundert : eine Ortbestimmung Y1 - 2005 SN - 1618-8519 ER - TY - JOUR A1 - Kuehn, Simone A1 - Elsner, Birgit A1 - Prinz, Wolfgang A1 - Brass, Marcel T1 - Busy doing nothing : evidence for nonaction-effect binding N2 - Research on voluntary action has focused on the question of how we represent our behavior on a motor and cognitive level. However, the question of how we represent voluntary not acting has been completely neglected. The aim of the present study was to investigate the cognitive and motor representation of intentionally not acting. By using an action-effect binding approach, we demonstrate similarities of action and nonaction. In particular, our results reveal that voluntary nonactions can be bound to an effect tone. This finding suggests that effect binding is not restricted to an association between a motor representation and a successive effect (action-effect binding) but can also occur for an intended nonaction and its effect (nonaction-effect binding). Moreover, we demonstrate that nonactions have to be initiated voluntarily in order to elicit nonaction-effect binding. Y1 - 2009 UR - http://pbr.psychonomic-journals.org/ U6 - https://doi.org/10.3758/Pbr.16.3.542 SN - 1069-9384 ER - TY - JOUR A1 - Parkinson, Jim A1 - Springer, Anne A1 - Prinz, Wolfgang T1 - Can you see me in the snow? - action simulation aids the detection of visually degraded human motion JF - The quarterly journal of experimental psychology N2 - Using a novel paradigm, we demonstrate that action simulation can directly facilitate ongoing perception of people's movements. Point-light actors (PLAs) representing common human motions were shown embedded in a visual noise reminiscent of "TV snow". At first, the PLAs were perceived clearly, then occluded from view for a short duration, during which it was hypothesized that a real-time action simulation was generated tracking the motion's course. The PLA then reappeared in motion at variable visibility against the noise, whilst detection thresholds for the reappearance were measured. In the crucial manipulation, the test motion was either temporally congruent with the motion as it would have continued during occlusion, and thus temporally matching the simulation, or temporally incongruent. Detection thresholds were lower for congruent than for incongruent reappearing motions, suggesting that reappearing motion that temporally matched the internal action simulation was more likely to be detected. KW - Biological motion KW - Action-perception KW - Real-time prediction KW - Point-light action Y1 - 2011 U6 - https://doi.org/10.1080/17470218.2011.594895 SN - 1747-0218 VL - 64 IS - 8 SP - 1463 EP - 1472 PB - Wiley CY - Hove ER - TY - JOUR A1 - Springer, Anne A1 - Brandstädter, Simone A1 - Liepelt, Roman A1 - Birngruber, Teresa A1 - Giese, Martin A1 - Mechsner, Franz A1 - Prinz, Wolfgang T1 - Motor execution affects action prediction JF - Brain and cognition : a journal of experimental and clinical research N2 - Previous studies provided evidence of the claim that the prediction of occluded action involves real-time simulation. We report two experiments that aimed to study how real-time simulation is affected by simultaneous action execution under conditions of full, partial or no overlap between observed and executed actions. This overlap was analysed by comparing the body sides and the movement kinematics involved in the observed and the executed action. While performing actions, participants observed point-light (PL) actions that were interrupted by an occluder, followed by a test pose. The task was to judge whether the test pose depicted a continuation of the occluded action in the same depth angle. Using a paradigm proposed by Graf et al., we independently manipulated the duration of the occluder and the temporal advance of the test pose relative to occlusion onset (occluder time and pose time, respectively). This paradigm allows the assessment of real-time simulation, based on prediction performance across different occluder time/pose time combinations (i.e., improved task performance with decreasing time distance between occluder time and pose time is taken to reflect real-time simulation). The PL actor could be perceived as from the front or back, as indicated by task instructions. In Experiment 1 (front view instructions), evidence of action simulation was obtained for partial overlap (i.e., observed and performed action corresponded either in body side or movement kinematics), but not for full or no overlap conditions. The same pattern was obtained in Experiment 2 (back view instructions), ruling out a spatial compatibility explanation for the real-time pattern observed. Our results suggest that motor processes affect action prediction and real-time simulation. The strength of their impact varies as a function of the overlap between observed and executed actions. KW - Action prediction KW - Internal simulation KW - Motor execution KW - Common coding KW - Perception-action-link Y1 - 2011 U6 - https://doi.org/10.1016/j.bandc.2011.03.007 SN - 0278-2626 VL - 76 IS - 1 SP - 26 EP - 36 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Stadler, Waltraud A1 - Ott, Derek V. M. A1 - Springer, Anne A1 - Schubotz, Ricarda I. A1 - Schütz-Bosbach, Simone A1 - Prinz, Wolfgang T1 - Repetitive TMS suggests a role of the human dorsal premotor cortex in action prediction JF - Frontiers in human neuroscienc N2 - Predicting the actions of other individuals is crucial for our daily interactions. Recent evidence suggests that the prediction of object-directed arm and full-body actions employs the dorsal premotor cortex (PMd). Thus, the neural substrate involved in action control may also be essential for action prediction. Here, we aimed to address this issue and hypothesized that disrupting the PMd impairs action prediction. Using fMRI-guided coil navigation, rTMS (five pulses, 10Hz) was applied over the left PMd and over the vertex (control region) while participants observed everyday actions in video clips that were transiently occluded for 1s. The participants detected manipulations in the time course of occluded actions, which required them to internally predict the actions during occlusion. To differentiate between functional roles that the PMd could play in prediction, rTMS was either delivered at occluder-onset (TMS-early), affecting the initiation of action prediction, or 300 ms later during occlusion(TMS-late), affecting the maintenance of anongoing prediction. TMS-early over the left PMd produced more prediction errors than TMS-early over the vertex. TMS-late had no effect on prediction performance, suggesting that the left PMd might be involved particularly during the initiation of internally guided action prediction but may play a subordinate role in maintaining ongoing prediction. These findings open a new perspective on the role of the left PMd in action prediction which is in line with its functions in action control and in cognitive tasks. In the discussion, there levance of the left PMd for integrating external action parameters with the observer's motor repertoire is emphasized. Overall, the results are in line with the notion that premotor functions are employed in both action control and action observation. KW - action observation KW - prediction KW - occlusion KW - premotor KW - PMd KW - transcranial magnetic stimulation Y1 - 2012 U6 - https://doi.org/10.3389/fnhum.2012.00020 SN - 1662-5161 VL - 6 IS - 2 PB - Frontiers Research Foundation CY - Lausanne ER -