TY - JOUR A1 - Baesler, Jessica A1 - Kopp, Johannes F. A1 - Pohl, Gabriele A1 - Aschner, Michael A1 - Haase, Hajo A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Zn homeostasis in genetic models of Parkinson’s disease in Caenorhabditis elegans JF - Journal of trace elements in medicine and biology KW - Caenorhabditis elegans KW - Zinc KW - Zinc homeostasis KW - Parkinson disease KW - Labile zinc Y1 - 2019 U6 - https://doi.org/10.1016/j.jtemb.2019.05.005 SN - 0946-672X VL - 55 SP - 44 EP - 49 PB - Elsevier GMBH CY - München ER - TY - JOUR A1 - Baesler, Jessica A1 - Kopp, Johannes Florian A1 - Pohl, Gabriele A1 - Aschner, Michael A1 - Haase, Hajo A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Zn homeostasis in genetic models of Parkinson’s disease in Caenorhabditis elegans JF - Journal of Trace Elements in Medicine and Biology N2 - While the underlying mechanisms of Parkinson’s disease (PD) are still insufficiently studied, a complex interaction between genetic and environmental factors is emphasized. Nevertheless, the role of the essential trace element zinc (Zn) in this regard remains controversial. In this study we altered Zn balance within PD models of the versatile model organism Caenorhabditis elegans (C. elegans) in order to examine whether a genetic predisposition in selected genes with relevance for PD affects Zn homeostasis. Protein-bound and labile Zn species act in various areas, such as enzymatic catalysis, protein stabilization pathways and cell signaling. Therefore, total Zn and labile Zn were quantitatively determined in living nematodes as individual biomarkers of Zn uptake and bioavailability with inductively coupled plasma tandem mass spectrometry (ICP-MS/MS) or a multi-well method using the fluorescent probe ZinPyr-1. Young and middle-aged deletion mutants of catp-6 and pdr-1, which are orthologues of mammalian ATP13A2 (PARK9) and parkin (PARK2), showed altered Zn homeostasis following Zn exposure compared to wildtype worms. Furthermore, age-specific differences in Zn uptake were observed in wildtype worms for total as well as labile Zn species. These data emphasize the importance of differentiation between Zn species as meaningful biomarkers of Zn uptake as well as the need for further studies investigating the role of dysregulated Zn homeostasis in the etiology of PD. KW - Caenorhabditis elegans KW - Zinc KW - Zinc homeostasis KW - Parkinson disease KW - Labile zinc Y1 - 2019 U6 - https://doi.org/10.1016/j.jtemb.2019.05.005 VL - 55 SP - 44 EP - 49 PB - Elsevier CY - München ER - TY - GEN A1 - Baesler, Jessica A1 - Michaelis, Vivien A1 - Stiboller, Michael A1 - Haase, Hajo A1 - Aschner, Michael A1 - Schwerdtle, Tanja A1 - Sturzenbaum, Stephen R. A1 - Bornhorst, Julia T1 - Nutritive manganese and zinc overdosing in aging c. elegans result in a metallothionein-mediated alteration in metal homeostasis T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Manganese (Mn) and zinc (Zn) are not only essential trace elements, but also potential exogenous risk factors for various diseases. Since the disturbed homeostasis of single metals can result in detrimental health effects, concerns have emerged regarding the consequences of excessive exposures to multiple metals, either via nutritional supplementation or parenteral nutrition. This study focuses on Mn-Zn-interactions in the nematode Caenorhabditis elegans (C. elegans) model, taking into account aspects related to aging and age-dependent neurodegeneration. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1364 KW - aging KW - C. elegans KW - homeostasis KW - manganese KW - zinc Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-514995 SN - 1866-8372 IS - 8 ER - TY - JOUR A1 - Baesler, Jessica A1 - Michaelis, Vivien A1 - Stiboller, Michael A1 - Haase, Hajo A1 - Aschner, Michael A1 - Schwerdtle, Tanja A1 - Sturzenbaum, Stephen R. A1 - Bornhorst, Julia T1 - Nutritive manganese and zinc overdosing in aging c. elegans result in a metallothionein-mediated alteration in metal homeostasis JF - Molecular Nutrition and Food Research N2 - Manganese (Mn) and zinc (Zn) are not only essential trace elements, but also potential exogenous risk factors for various diseases. Since the disturbed homeostasis of single metals can result in detrimental health effects, concerns have emerged regarding the consequences of excessive exposures to multiple metals, either via nutritional supplementation or parenteral nutrition. This study focuses on Mn-Zn-interactions in the nematode Caenorhabditis elegans (C. elegans) model, taking into account aspects related to aging and age-dependent neurodegeneration. KW - aging KW - C. elegans KW - homeostasis KW - manganese KW - zinc Y1 - 2021 U6 - https://doi.org/10.1002/mnfr.202001176 SN - 1613-4133 SN - 1613-4125 VL - 65 IS - 8 SP - 1 EP - 11 PB - Wiley-VCH GmbH CY - Weinheim ER - TY - JOUR A1 - Bornhorst, Julia A1 - Ebert, Franziska A1 - Meyer, Sören A1 - Ziemann, Vanessa A1 - Xiong, Chan A1 - Guttenberger, Nikolaus A1 - Raab, Andrea A1 - Baesler, Jessica A1 - Aschner, Michael A1 - Feldmann, Jörg A1 - Francesconi, Kevin A1 - Raber, Georg A1 - Schwerdtle, Tanja T1 - Toxicity of three types of arsenolipids BT - species-specific effects in Caenorhabditis elegans JF - Metallomics N2 - Although fish and seafood are well known for their nutritional benefits, they contain contaminants that might affect human health. Organic lipid-soluble arsenic species, so called arsenolipids, belong to the emerging contaminants in these food items; their toxicity has yet to be systematically studied. Here, we apply the in vivo model Caenorhabditis elegans to assess the effects of two arsenic-containing hydrocarbons (AsHC), a saturated arsenic-containing fatty acid (AsFA), and an arsenic-containing triacylglyceride (AsTAG) in a whole organism. Although all arsenolipids were highly bioavailable in Caenorhabditis elegans, only the AsHCs were substantially metabolized to thioxylated or shortened metabolic products and induced significant toxicity, affecting both survival and development. Furthermore, the AsHCs were several fold more potent as compared to the toxic reference arsenite. This study clearly indicates the need for a full hazard identification of subclasses of arsenolipids to assess whether they pose a risk to human health. Y1 - 2020 U6 - https://doi.org/https://doi.org/10.1039/d0mt00039f SN - 1756-591X SN - 1756-5901 VL - 12 IS - 5 SP - 794 EP - 798 PB - Oxford University Press CY - Cambridge ER - TY - JOUR A1 - Chen, Pan A1 - Bornhorst, Julia A1 - Aschner, Michael T1 - Manganese metabolism in humans JF - Frontiers in Bioscience-Landmark N2 - Manganese (Mn) is an essential nutrient for intracellular activities; it functions as a cofactor for a variety of enzymes, including arginase, glutamine synthetase (GS), pyruvate carboxylase and Mn superoxide dismutase (Mn-SOD). Through these metalloproteins, Mn plays critically important roles in development, digestion, reproduction, antioxidant defense, energy production, immune response and regulation of neuronal activities. Mn deficiency is rare. In contrast Mn poisoning may be encountered upon overexposure to this metal. Excessive Mn tends to accumulate in the liver, pancreas, bone, kidney and brain, with the latter being the major target of Mn intoxication. Hepatic cirrhosis, polycythemia, hypermanganesemia, dystonia and Parkinsonism-like symptoms have been reported in patients with Mn poisoning. In recent years, Mn has come to the forefront of environmental concerns due to its neurotoxicity. Molecular mechanisms of Mn toxicity include oxidative stress, mitochondrial dysfunction, protein misfolding, endoplasmic reticulum (ER) stress, autophagy dysregulation, apoptosis, and disruption of other metal homeostasis. The mechanisms of Mn homeostasis are not fully understood. Here, we will address recent progress in Mn absorption, distribution and elimination across different tissues, as well as the intracellular regulation of Mn homeostasis in cells. We will conclude with recommendations for future research areas on Mn metabolism. KW - Manganese KW - Metal Metabolism KW - Homeostasis KW - Blood-Brain Barrier KW - Neurotoxicity KW - Transporters KW - Review Y1 - 2018 U6 - https://doi.org/10.2741/4665 SN - 1093-9946 SN - 1093-4715 VL - 23 IS - 9 SP - 1655 EP - 1679 PB - Frontiers in Bioscience INC CY - Irvine ER - TY - JOUR A1 - Ferrer, Beatriz A1 - Peres, Tanara Vieira A1 - dos Santos, Alessandra Antunes A1 - Bornhorst, Julia A1 - Morcillo, Patricia A1 - Goncalves, Cinara Ludvig A1 - Aschner, Michael T1 - Methylmercury affects the expression of hypothalamic neuropeptides that control body weight in C57BL/6J mice JF - Toxicological sciences N2 - Methylmercury (MeHg) is an environmental pollutant that affects primarily the central nervous system (CNS), causing neurological alterations. An early symptom of MeHg poisoning is the loss of body weight and appetite. Moreover, the CNS has an important role in controlling energy homeostasis. It is known that in the hypothalamus nutrient and hormonal signals converge to orchestrate control of body weight and food intake. In this study, we investigated if MeHg is able to induce changes in the expression of key hypothalamic neuropeptides that regulate energy homeostasis. Thus, hypothalamic neuronal mouse cell line GT 1-7 was treated with MeHg at different concentrations (0, 0.5, 1, and 5 mu M). MeHg induced the expression of the anorexigenic neuropeptide pro-omiomelanocortin (Pomc) and the orexigenic peptide Agouti-related peptide (Agrp) in a concentration-dependent manner, suggesting deregulation of mechanisms that control body weight. To confirm these in vitro observations, 8-week-old C57BL/6J mice (males and females) were exposed to MeHg in drinking water, modeling the most prevalent exposure route to this metal. After 30-day exposure, no changes in body weight were detected. However, MeHg treated males showed a significant decrease in fat depots. Moreover, MeHg affected the expression of hypothalamic neuropeptides that control food intake and body weight in a gender-and dose-dependent manner. Thus, MeHg increases Pomc mRNA only in males in a dose-dependent way, and it does not have effects on the expression of Agrp mRNA. The present study shows, for first time, that MeHg is able to induce changes in hypothalamic neuropeptides that regulate energy homeostasis, favoring an anorexigenic/catabolic profile. KW - methylmercury KW - hypothalamus KW - neuropeptides KW - control body weight KW - glucose homeostasis Y1 - 2018 U6 - https://doi.org/10.1093/toxsci/kfy052 SN - 1096-6080 SN - 1096-0929 VL - 163 IS - 2 SP - 557 EP - 568 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Gubert, Priscila A1 - Puntel, Bruna A1 - Lehmen, Tassia A1 - Fessel, Joshua P. A1 - Cheng, Pan A1 - Bornhorst, Julia A1 - Trindade, Lucas Siqueira A1 - Avila, Daiana S. A1 - Aschner, Michael A1 - Soares, Felix A. A. T1 - Metabolic effects of manganese in the nematode Caenorhabditis elegans through DAergic pathway and transcription factors activation JF - Neurotoxicology : the interdisciplinary journal of effects to toxic substances on the nervous system N2 - Manganese (Mn) is an essential trace element for physiological functions since it acts as an enzymatic co-factor. Nevertheless, overexposure to Mn has been associated with a pathologic condition called manganism. Furthermore, Mn has been reported to affect lipid metabolism by mechanisms which have yet to be established. Herein, we used the nematode Caenorhabditis elegans to examine Mn’s effects on the dopaminergic (DAergic) system and determine which transcription factors that regulate with lipid metabolism are affected by it. Worms were exposed to Mn for four hours in the presence of bacteria and in a liquid medium (85 mM NaCl). Mn increased fat storage as evidenced both by Oil Red O accumulation and triglyceride levels. In addition, metabolic activity was reduced as a reflection of decreased oxygen consumption caused by Mn. Mn also affected feeding behavior as evidenced by decreased pharyngeal pumping rate. DAergic neurons viability were not altered by Mn, however the dopamine levels were significantly reduced following Mn exposure. Furthermore, the expression of sbp-1 transcription factor and let-363 protein kinase responsible for lipid accumulation control was increased and decreased, respectively, by Mn. Altogether, our data suggest that Mn increases the fat storage in C. elegans, secondary to DAergic system alterations, under the control of SBP-1 and LET-363 proteins. KW - Manganese KW - Caenorhabditis elegans KW - Lipid metabolism KW - Dopaminergic system KW - Manganism Y1 - 2018 U6 - https://doi.org/10.1016/j.neuro.2018.04.008 SN - 0161-813X SN - 1872-9711 VL - 67 SP - 65 EP - 72 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Nicolai, Merle Marie A1 - Baesler, Jessica A1 - Aschner, Michael A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Consequences of manganese overload in C. elegans BT - oxidative stress and DNA damage JF - Naunyn-Schmiedeberg's archives of pharmacology / ed. for the Deutsche Gesellschaft für Experimentelle und Klinische Pharmakologie und Toxikologie Y1 - 2020 U6 - https://doi.org/10.1007/s00210-020-01828-y SN - 0028-1298 SN - 1432-1912 VL - 393 IS - SUPPL 1 SP - 9 EP - 9 PB - Springer CY - New York ER - TY - JOUR A1 - Nicolai, Merle Marie A1 - Weishaupt, Ann-Kathrin A1 - Baesler, Jessica A1 - Brinkmann, Vanessa A1 - Wellenberg, Anna A1 - Winkelbeiner, Nicola Lisa A1 - Gremme, Anna A1 - Aschner, Michael A1 - Fritz, Gerhard A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Effects of manganese on genomic integrity in the multicellular model organism Caenorhabditis elegans JF - International Journal of Molecular Sciences N2 - Although manganese (Mn) is an essential trace element, overexposure is associated with Mn-induced toxicity and neurological dysfunction. Even though Mn-induced oxidative stress is discussed extensively, neither the underlying mechanisms of the potential consequences of Mn-induced oxidative stress on DNA damage and DNA repair, nor the possibly resulting toxicity are characterized yet. In this study, we use the model organism Caenorhabditis elegans to investigate the mode of action of Mn toxicity, focusing on genomic integrity by means of DNA damage and DNA damage response. Experiments were conducted to analyze Mn bioavailability, lethality, and induction of DNA damage. Different deletion mutant strains were then used to investigate the role of base excision repair (BER) and dePARylation (DNA damage response) proteins in Mn-induced toxicity. The results indicate a dose- and time-dependent uptake of Mn, resulting in increased lethality. Excessive exposure to Mn decreases genomic integrity and activates BER. Altogether, this study characterizes the consequences of Mn exposure on genomic integrity and therefore broadens the molecular understanding of pathways underlying Mn-induced toxicity. Additionally, studying the basal poly(ADP-ribosylation) (PARylation) of worms lacking poly(ADP-ribose) glycohydrolase (PARG) parg-1 or parg-2 (two orthologue of PARG), indicates that parg-1 accounts for most of the glycohydrolase activity in worms. KW - manganese KW - oxidative stress KW - DNA repair KW - DNA damage response KW - Caenorhabditis elegans Y1 - 2021 U6 - https://doi.org/10.3390/ijms222010905 SN - 1422-0067 VL - 22 IS - 20 PB - MDPI CY - Basel ER -