TY - JOUR A1 - Albus, Alexander P. A1 - Illuminati, Fabrizio A1 - Eisert, Jens T1 - Mixtures of bosonic and fermionic atoms in optical lattices Y1 - 2003 ER - TY - JOUR A1 - Audenaert, Katrien A1 - Eisert, Jens A1 - Jane, E. A1 - Plenio, M. B. A1 - Virmani, S. A1 - Moor, B. D. T1 - The asymptotic relative entropy of entanglement N2 - We present an analytical formula for the asymptotic relative entropy of entanglement for Werner states of arbitrary dimensionality. We then demonstrate its validity using methods from convex optimization. This is the first case in which the value of a subadditive entanglement measure has been obtained in the asymptotic limit. This formula also gives the sharpest known upper bound on the distillable entanglement of these states. Y1 - 2001 ER - TY - JOUR A1 - Barthel, Thomas A1 - Kliesch, Martin A1 - Eisert, Jens T1 - Real-space renormalization yields finite correlations N2 - Real-space renormalization approaches for quantum lattice systems generate certain hierarchical classes of states that are subsumed by the multiscale entanglement renormalization Ansatz (MERA). It is shown that, with the exception of one spatial dimension, MERA states are actually states with finite correlations, i.e., projected entangled pair states (PEPS) with a bond dimension independent of the system size. Hence, real-space renormalization generates states which can be encoded with local effective degrees of freedom, and MERA states form an efficiently contractible class of PEPS that obey the area law for the entanglement entropy. It is further pointed out that there exist other efficiently contractible schemes violating the area law. Y1 - 2010 UR - http://prl.aps.org/ U6 - https://doi.org/10.1103/Physrevlett.105.010502 SN - 0031-9007 ER - TY - JOUR A1 - Barthel, Thomas A1 - Pineda, Carlos A1 - Eisert, Jens T1 - Contraction of fermionic operator circuits and the simulation of strongly correlated fermions N2 - A fermionic operator circuit is a product of fermionic operators of usually different and partially overlapping support. Further elements of fermionic operator circuits (FOCs) are partial traces and partial projections. The presented framework allows for the introduction of fermionic versions of known qudit operator circuits (QUOC), important for the simulation of strongly correlated d-dimensional systems: the multiscale entanglement renormalization ansaumltze (MERA), tree tensor networks (TTN), projected entangled pair states (PEPS), or their infinite-size versions (iPEPS etc.). After the definition of a FOC, we present a method to contract it with the same computation and memory requirements as a corresponding QUOC, for which all fermionic operators are replaced by qudit operators of identical dimension. A given scheme for contracting the QUOC relates to an analogous scheme for the corresponding fermionic circuit, where additional marginal computational costs arise only from reordering of modes for operators occurring in intermediate stages of the contraction. Our result hence generalizes efficient schemes for the simulation of d- dimensional spin systems, as MERA, TTN, or PEPS to the fermionic case. Y1 - 2009 UR - http://pra.aps.org/ U6 - https://doi.org/10.1103/Physreva.80.042333 SN - 1050-2947 ER - TY - JOUR A1 - Brandao, F. G. S. L. A1 - Eisert, Jens A1 - Horodecki, M. A1 - Yang, Dong T1 - Entangled inputs cannot make imperfect quantum channels perfect JF - Physical review letters N2 - Entangled inputs can enhance the capacity of quantum channels, this being one of the consequences of the celebrated result showing the nonadditivity of several quantities relevant for quantum information science. In this work, we answer the converse question (whether entangled inputs can ever render noisy quantum channels to have maximum capacity) to the negative: No sophisticated entangled input of any quantum channel can ever enhance the capacity to the maximum possible value, a result that holds true for all channels both for the classical as well as the quantum capacity. This result can hence be seen as a bound as to how "nonadditive quantum information can be.'' As a main result, we find first practical and remarkably simple computable single-shot bounds to capacities, related to entanglement measures. As examples, we discuss the qubit amplitude damping and identify the first meaningful bound for its classical capacity. Y1 - 2011 U6 - https://doi.org/10.1103/PhysRevLett.106.230502 SN - 0031-9007 VL - 106 IS - 23 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Burrell, Christian K. A1 - Eisert, Jens A1 - Osborne, Tobias J. T1 - Information propagation through quantum chains with fluctuating disorder N2 - We investigate the propagation of information through one-dimensional nearest-neighbor interacting quantum spin chains in the presence of external fields which fluctuate independently on each site. We study two fundamentally different models: (i) a model with general nearest-neighbor interactions in a field which fluctuates in both strength and direction and (ii) the XX chain placed in a fluctuating field aligned in the z direction. In both cases we find that information propagation is suppressed in a way which is quite different from the suppression observed when the XX model is placed in a statically disordered field. Y1 - 2009 UR - http://pra.aps.org/ U6 - https://doi.org/10.1103/Physreva.80.052319 SN - 1050-2947 ER - TY - JOUR A1 - Campbell, Earl T. A1 - Eisert, Jens T1 - Gaussification and entanglement distillation of continuous-variable systems a unifying picture JF - Physical review letters N2 - Distillation of entanglement using only Gaussian operations is an important primitive in quantum communication, quantum repeater architectures, and distributed quantum computing. Existing distillation protocols for continuous degrees of freedom are only known to converge to a Gaussian state when measurements yield precisely the vacuum outcome. In sharp contrast, non-Gaussian states can be deterministically converted into Gaussian states while preserving their second moments, albeit by usually reducing their degree of entanglement. In this work-based on a novel instance of a noncommutative central limit theorem-we introduce a picture general enough to encompass the known protocols leading to Gaussian states, and new classes of protocols including multipartite distillation. This gives the experimental option of balancing the merits of success probability against entanglement produced. Y1 - 2012 U6 - https://doi.org/10.1103/PhysRevLett.108.020501 SN - 0031-9007 VL - 108 IS - 2 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Cramer, Marcus A1 - Eisert, Jens T1 - Correlations, spectral gap and entanglement in harmonic quantum systems on generic lattices N2 - We investigate the relationship between the gap between the energy of the ground state and the first excited state and the decay of correlation functions in harmonic lattice systems. We prove that in gapped systems, the exponential decay of correlations follows for both the ground state and thermal states. Considering the converse direction, we show that an energy gap can follow from algebraic decay and always does for exponential decay. The underlying lattices are described as general graphs of not necessarily integer dimension, including translationally invariant instances of cubic lattices as special cases. Any local quadratic couplings in position and momentum coordinates are allowed for, leading to quasi-free ( Gaussian) ground states. We make use of methods of deriving bounds to matrix functions of banded matrices corresponding to local interactions on general graphs. Finally, we give an explicit entanglement-area relationship in terms of the energy gap for arbitrary, not necessarily contiguous regions on lattices characterized by general graphs Y1 - 2006 UR - http://iopscience.iop.org/1367-2630 U6 - https://doi.org/10.1088/1367-2630/8/5/071 SN - 1367-2630 ER - TY - JOUR A1 - Cramer, Marcus A1 - Eisert, Jens T1 - A quantum central limit theorem for non-equilibrium systems : exact local relaxation of correlated states N2 - We prove that quantum many-body systems on a one-dimensional lattice locally relax to Gaussian states under non- equilibrium dynamics generated by a bosonic quadratic Hamiltonian. This is true for a large class of initial states-pure or mixed-which have to satisfy merely weak conditions concerning the decay of correlations. The considered setting is a proven instance of a situation where dynamically evolving closed quantum systems locally appear as if they had truly relaxed, to maximum entropy states for fixed second moments. This furthers the understanding of relaxation in suddenly quenched quantum many-body systems. The proof features a non-commutative central limit theorem for non-i.i.d. random variables, showing convergence to Gaussian characteristic functions, giving rise to trace-norm closeness. We briefly link our findings to the ideas of typicality and concentration of measure. Y1 - 2010 UR - http://iopscience.iop.org/1367-2630 U6 - https://doi.org/10.1088/1367-2630/12/5/055020 SN - 1367-2630 ER - TY - BOOK A1 - Cramer, Marcus A1 - Eisert, Jens A1 - Illuminati, Fabrizio T1 - Inhomogeneous atomic Bose-Fermi mixtures in cubic lattices N2 - We determine the ground state properties of inhomogeneous mixtures of bosons and fermions in cubic lattices and parabolic confining potentials. For finite hopping we determine the domain boundaries between Mott-insulator plateaux and hopping-dominated regions for lattices of arbitrary dimension within mean-field and perturbation theory. The results are compared with a new numerical method that is based on a Gutzwiller variational approach for the bosons and an exact treatment for the fermions. The findings can be applied as a guideline for future experiments with trapped atomic Bose- Fermi mixtures in optical lattices Y1 - 2004 SN - 0031-9007 ER -