TY - JOUR A1 - Ghafarian, Fatemeh A1 - Wieland, Ralf A1 - Lüttschwager, Dietmar A1 - Nendel, Claas T1 - Application of extreme gradient boosting and Shapley Additive explanations to predict temperature regimes inside forests from standard open-field meteorological data JF - Environmental modelling & software with environment data news N2 - Forest microclimate can buffer biotic responses to summer heat waves, which are expected to become more extreme under climate warming. Prediction of forest microclimate is limited because meteorological observation standards seldom include situations inside forests. We use eXtreme Gradient Boosting - a Machine Learning technique - to predict the microclimate of forest sites in Brandenburg, Germany, using seasonal data comprising weather features. The analysis was amended by applying a SHapley Additive explanation to show the interaction effect of variables and individualised feature attributions. We evaluate model performance in comparison to artificial neural networks, random forest, support vector machine, and multi-linear regression. After implementing a feature selection, an ensemble approach was applied to combine individual models for each forest and improve robustness over a given single prediction model. The resulting model can be applied to translate climate change scenarios into temperatures inside forests to assess temperature-related ecosystem services provided by forests. KW - cooling effect KW - machine learning KW - ensemble method KW - ecosystem services Y1 - 2022 U6 - https://doi.org/10.1016/j.envsoft.2022.105466 SN - 1364-8152 SN - 1873-6726 VL - 156 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Armstrong, Michael R. A1 - Radousky, Harry B. A1 - Austin, Ryan A. A1 - Tschauner, Oliver A1 - Brown, Shaughnessy A1 - Gleason, Arianna E. A1 - Goldman, Nir A1 - Granados, Eduardo A1 - Grivickas, Paulius A1 - Holtgrewe, Nicholas A1 - Kroonblawd, Matthew P. A1 - Lee, Hae Ja A1 - Lobanov, Sergey A1 - Nagler, Bob A1 - Nam, Inhyuk A1 - Prakapenka, Vitali A1 - Prescher, Clemens A1 - Reed, Evan J. A1 - Stavrou, Elissaios A1 - Walter, Peter A1 - Goncharov, Alexander F. A1 - Belof, Jonathan L. T1 - Highly ordered graphite (HOPG) to hexagonal diamond (lonsdaleite) phase transition observed on picosecond time scales using ultrafast x-ray diffraction JF - Journal of applied physics N2 - The response of rapidly compressed highly oriented pyrolytic graphite (HOPG) normal to its basal plane was investigated at a pressure of & SIM;80 GPa. Ultrafast x-ray diffraction using & SIM;100 fs pulses at the Materials Under Extreme Conditions sector of the Linac Coherent Light Source was used to probe the changes in crystal structure resulting from picosecond timescale compression at laser drive energies ranging from 2.5 to 250 mJ. A phase transformation from HOPG to a highly textured hexagonal diamond structure is observed at the highest energy, followed by relaxation to a still highly oriented, but distorted graphite structure following release. We observe the formation of a highly oriented lonsdaleite within 20 ps, subsequent to compression. This suggests that a diffusionless martensitic mechanism may play a fundamental role in phase transition, as speculated in an early work on this system, and more recent static studies of diamonds formed in impact events. Published by AIP Publishing. Y1 - 2022 U6 - https://doi.org/10.1063/5.0085297 SN - 0021-8979 SN - 1089-7550 VL - 132 IS - 5 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Sobhkhiz-Miandehi, Sahar A1 - Yamazaki, Yosuke A1 - Arras, Christina A1 - Miyoshi, Yasunobu A1 - Shinagawa, Hiroyuki T1 - Comparison of the tidal signatures in sporadic E and vertical ion convergence rate, using FORMOSAT-3/COSMIC radio occultation observations and GAIA model JF - Earth, planets and space : EPS N2 - Sporadic E or Es is a transient phenomenon where thin layers of enhanced electron density appear in the ionospheric E region (90-120 km altitude). The neutral wind shear caused by atmospheric tides can lead ions to converge vertically at E-region heights and form the Es layer. This research aims to determine the role of atmospheric solar and lunar tides in Es occurrence. For this purpose, radio occultation data of FORMOSAT-3/COSMIC have been used, which provide complete global coverage of Es events. Moreover, GAIA model simulations have been employed to evaluate the vertical ion convergence induced by solar tides. The results show both migrating and non-migrating solar tidal signatures and the semidiurnal migrating lunar tidal signature mainly in low and mid-latitude Es occurrence. The seasonal variation of the migrating solar tidal components of Es is in good agreement with those in the vertical ion convergence derived from GAIA at higher altitudes. Furthermore, some non-migrating components of solar tides, including semidiurnal westward wavenumbers 1 and 3 and diurnal eastward wavenumbers 2 and 3, also significantly affect the Es occurrence rate. KW - Sporadic E KW - Es KW - wind shear KW - solar tide KW - lunar tide KW - GAIA KW - radio occultation Y1 - 2022 U6 - https://doi.org/10.1186/s40623-022-01637-y SN - 1880-5981 VL - 74 IS - 1 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Schuster, Valerian A1 - Rybacki, Erik A1 - Bonnelye, Audrey A1 - Dresen, Georg T1 - Authors’ Reply to the Discussion by Crisci et al. (2021): Experimental deformation of Opalinus Clay at elevated temperature and pressure conditions BT - mechanical properties and the influence of rock fabric JF - Rock mechanics and rock engineering KW - opalinus clay KW - testing procedure KW - pore pressure generation KW - strain rate KW - drying-induced micro cracks Y1 - 2021 U6 - https://doi.org/10.1007/s00603-021-02675-w SN - 0723-2632 SN - 1434-453X VL - 55 SP - 467 EP - 469 PB - Springer CY - Wien ER - TY - JOUR A1 - Knox-Brown, Patrick A1 - Rindfleisch, Tobias A1 - Günther, Anne A1 - Balow, Kim A1 - Bremer, Anne A1 - Walther, Dirk A1 - Miettinen, Markus S. A1 - Hincha, Dirk K. A1 - Thalhammer, Anja T1 - Similar Yet Different BT - Structural and Functional Diversity among Arabidopsis thaliana LEA_4 Proteins JF - International Journal of Molecular Sciences N2 - The importance of intrinsically disordered late embryogenesis abundant (LEA) proteins in the tolerance to abiotic stresses involving cellular dehydration is undisputed. While structural transitions of LEA proteins in response to changes in water availability are commonly observed and several molecular functions have been suggested, a systematic, comprehensive and comparative study of possible underlying sequence-structure-function relationships is still lacking. We performed molecular dynamics (MD) simulations as well as spectroscopic and light scattering experiments to characterize six members of two distinct, lowly homologous clades of LEA_4 family proteins from Arabidopsis thaliana. We compared structural and functional characteristics to elucidate to what degree structure and function are encoded in LEA protein sequences and complemented these findings with physicochemical properties identified in a systematic bioinformatics study of the entire Arabidopsis thaliana LEA_4 family. Our results demonstrate that although the six experimentally characterized LEA_4 proteins have similar structural and functional characteristics, differences concerning their folding propensity and membrane stabilization capacity during a freeze/thaw cycle are obvious. These differences cannot be easily attributed to sequence conservation, simple physicochemical characteristics or the abundance of sequence motifs. Moreover, the folding propensity does not appear to be correlated with membrane stabilization capacity. Therefore, the refinement of LEA_4 structural and functional properties is likely encoded in specific patterns of their physicochemical characteristics. KW - IDP KW - LEA protein KW - abiotic stress KW - dehydration KW - conformational rearrangement KW - membrane stabilization KW - sequence-structure-function relationship Y1 - 2020 U6 - https://doi.org/10.3390/ijms21082794 SN - 1422-0067 VL - 21 IS - 8 PB - Molecular Diversity Preservation International CY - Basel ER - TY - JOUR A1 - Raju, Rajarshi Roy A1 - Liebig, Ferenc A1 - Klemke, Bastian A1 - Koetz, Joachim T1 - Ultralight magnetic aerogels from Janus emulsions JF - RSC Advances N2 - Magnetite containing aerogels were synthesized by freeze-drying olive oil/silicone oil-based Janus emulsion gels containing gelatin and sodium carboxymethylcellulose (NaCMC). The magnetite nanoparticles dispersed in olive oil are processed into the gel and remain in the macroporous aerogel after removing the oil components. The coexistence of macropores from the Janus droplets and mesopores from freeze-drying of the hydrogels in combination with the magnetic properties offer a special hierarchical pore structure, which is of relevance for smart supercapacitors, biosensors, and spilled oil sorption and separation. The morphology of the final structure was investigated in dependence on initial compositions. More hydrophobic aerogels with magnetic responsiveness were synthesized by bisacrylamide-crosslinking of the hydrogel. The crosslinked aerogels can be successfully used in magnetically responsive clean up experiments of the cationic dye methylene blue. Y1 - 2019 U6 - https://doi.org/10.1039/c9ra10247g SN - 2046-2069 VL - 10 IS - 13 SP - 7492 EP - 7499 PB - RSC Publishing CY - London ER - TY - JOUR A1 - Schell, Mareike A1 - Chudoba, Chantal A1 - Leboucher, Antoine A1 - Alfine, Eugenia A1 - Flore, Tanina A1 - Ritter, Katrin A1 - Weiper, Katharina A1 - Wernitz, Andreas A1 - Henkel, Janin A1 - Kleinridders, André T1 - Interplay of Dietary Fatty Acids and Cholesterol Impacts Brain Mitochondria and Insulin Action JF - Nutrients N2 - Overconsumption of high-fat and cholesterol-containing diets is detrimental for metabolism and mitochondrial function, causes inflammatory responses and impairs insulin action in peripheral tissues. Dietary fatty acids can enter the brain to mediate the nutritional status, but also to influence neuronal homeostasis. Yet, it is unclear whether cholesterol-containing high-fat diets (HFDs) with different combinations of fatty acids exert metabolic stress and impact mitochondrial function in the brain. To investigate whether cholesterol in combination with different fatty acids impacts neuronal metabolism and mitochondrial function, C57BL/6J mice received different cholesterol-containing diets with either high concentrations of long-chain saturated fatty acids or soybean oil-derived poly-unsaturated fatty acids. In addition, CLU183 neurons were stimulated with combinations of palmitate, linoleic acid and cholesterol to assess their effects on metabolic stress, mitochondrial function and insulin action. The dietary interventions resulted in a molecular signature of metabolic stress in the hypothalamus with decreased expression of occludin and subunits of mitochondrial electron chain complexes, elevated protein carbonylation, as well as c-Jun N-terminal kinase (JNK) activation. Palmitate caused mitochondrial dysfunction, oxidative stress, insulin and insulin-like growth factor-1 (IGF-1) resistance, while cholesterol and linoleic acid did not cause functional alterations. Finally, we defined insulin receptor as a novel negative regulator of metabolically stress-induced JNK activation. KW - cholesterol KW - insulin signaling KW - mitochondria KW - brain KW - inflammation KW - fatty acids KW - JNK KW - insulin receptor Y1 - 2020 U6 - https://doi.org/10.3390/nu12051518 SN - 2072-6643 VL - 12 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Liebig, Ferenc A1 - Sarhan, Radwan Mohamed A1 - Bargheer, Matias A1 - Schmitt, Clemens Nikolaus Zeno A1 - Poghosyan, Armen H. A1 - Shahinyanf, Aram A. A1 - Koetz, Joachim T1 - Spiked gold nanotriangles BT - Formation, characterization and applications in surface-enhanced Raman spectroscopy and plasmon-enhanced catalysis JF - RSC Advances N2 - We show the formation of metallic spikes on the surface of gold nanotriangles (AuNTs) by using the same reduction process which has been used for the synthesis of gold nanostars. We confirm that silver nitrate operates as a shape-directing agent in combination with ascorbic acid as the reducing agent and investigate the mechanism by dissecting the contribution of each component, i.e., anionic surfactant dioctyl sodium sulfosuccinate (AOT), ascorbic acid (AA), and AgNO3. Molecular dynamics (MD) simulations show that AA attaches to the AOT bilayer of nanotriangles, and covers the surface of gold clusters, which is of special relevance for the spike formation process at the AuNT surface. The surface modification goes hand in hand with a change of the optical properties. The increased thickness of the triangles and a sizeable fraction of silver atoms covering the spikes lead to a blue-shift of the intense near infrared absorption of the AuNTs. The sponge-like spiky surface increases both the surface enhanced Raman scattering (SERS) cross section of the particles and the photo-catalytic activity in comparison with the unmodified triangles, which is exemplified by the plasmon-driven dimerization of 4-nitrothiophenol (4-NTP) to 4,4'-dimercaptoazobenzene (DMAB). Y1 - 2020 U6 - https://doi.org/10.1039/d0ra00729c SN - 2046-2069 VL - 10 IS - 14 SP - 8152 EP - 8160 PB - RSC Publishing CY - London ER - TY - JOUR A1 - Maier, Corinna A1 - Hartung, Niklas A1 - de Wiljes, Jana A1 - Kloft, Charlotte A1 - Huisinga, Wilhelm T1 - Bayesian Data Assimilation to Support Informed Decision Making in Individualized Chemotherapy JF - CPT: Pharmacometrics & Systems Pharmacology N2 - An essential component of therapeutic drug/biomarker monitoring (TDM) is to combine patient data with prior knowledge for model-based predictions of therapy outcomes. Current Bayesian forecasting tools typically rely only on the most probable model parameters (maximum a posteriori (MAP) estimate). This MAP-based approach, however, does neither necessarily predict the most probable outcome nor does it quantify the risks of treatment inefficacy or toxicity. Bayesian data assimilation (DA) methods overcome these limitations by providing a comprehensive uncertainty quantification. We compare DA methods with MAP-based approaches and show how probabilistic statements about key markers related to chemotherapy-induced neutropenia can be leveraged for more informative decision support in individualized chemotherapy. Sequential Bayesian DA proved to be most computationally efficient for handling interoccasion variability and integrating TDM data. For new digital monitoring devices enabling more frequent data collection, these features will be of critical importance to improve patient care decisions in various therapeutic areas. KW - Induced neutropenia KW - Model KW - Myelosuppression KW - Prediction Y1 - 2019 U6 - https://doi.org/10.1002/psp4.12492 SN - 2163-8306 VL - XX PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - von Reppert, Alexander A1 - Mattern, Maximilian A1 - Pudell, Jan-Etienne A1 - Zeuschner, Steffen Peer A1 - Dumesnil, Karine A1 - Bargheer, Matias T1 - Unconventional picosecond strain pulses resulting from the saturation of magnetic stress within a photoexcited rare earth layer JF - Structural Dynamics N2 - Optical excitation of spin-ordered rare earth metals triggers a complex response of the crystal lattice since expansive stresses from electron and phonon excitations compete with a contractive stress induced by spin disorder. Using ultrafast x-ray diffraction experiments, we study the layer specific strain response of a dysprosium film within a metallic heterostructure upon femtosecond laser-excitation. The elastic and diffusive transport of energy to an adjacent, non-excited detection layer clearly separates the contributions of strain pulses and thermal excitations in the time domain. We find that energy transfer processes to magnetic excitations significantly modify the observed conventional bipolar strain wave into a unipolar pulse. By modeling the spin system as a saturable energy reservoir that generates substantial contractive stress on ultrafast timescales, we can reproduce the observed strain response and estimate the time- and space dependent magnetic stress. The saturation of the magnetic stress contribution yields a non-monotonous total stress within the nanolayer, which leads to unconventional picosecond strain pulses. KW - Strain measurement KW - Photoexcitations KW - Crystal lattices KW - Femtosecond lasers KW - Thermal effects KW - Heterostructures KW - Ultrafast X-rays KW - Phonons Y1 - 2020 U6 - https://doi.org/10.1063/1.5145315 SN - 2329-7778 VL - 7 IS - 024303 PB - AIP Publishing LLC CY - Melville, NY ER -