TY - JOUR A1 - de Abreu e Lima, Francisco Anastacio A1 - Li, Kun A1 - Wen, Weiwei A1 - Yan, Jianbing A1 - Nikoloski, Zoran A1 - Willmitzer, Lothar A1 - Brotman, Yariv T1 - Unraveling lipid metabolism in maize with time-resolved multi-omics data JF - The plant journal N2 - Maize is the cereal crop with the highest production worldwide, and its oil is a key energy resource. Improving the quantity and quality of maize oil requires a better understanding of lipid metabolism. To predict the function of maize genes involved in lipid biosynthesis, we assembled transcriptomic and lipidomic data sets from leaves of B73 and the high-oil line By804 in two distinct time-series experiments. The integrative analysis based on high-dimensional regularized regression yielded lipid-transcript associations indirectly validated by Gene Ontology and promoter motif enrichment analyses. The co-localization of lipid-transcript associations using the genetic mapping of lipid traits in leaves and seedlings of a B73 x By804 recombinant inbred line population uncovered 323 genes involved in the metabolism of phospholipids, galactolipids, sulfolipids and glycerolipids. The resulting association network further supported the involvement of 50 gene candidates in modulating levels of representatives from multiple acyl-lipid classes. Therefore, the proposed approach provides high-confidence candidates for experimental testing in maize and model plant species. KW - Zea mays KW - lipid metabolism KW - omics KW - GFLASSO KW - QTL Y1 - 2018 U6 - https://doi.org/10.1111/tpj.13833 SN - 0960-7412 SN - 1365-313X VL - 93 IS - 6 SP - 1102 EP - 1115 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Wu, Hao A1 - Han, Yijie A1 - Rodriguez Sillke, Yasmina A1 - Deng, Hongzhang A1 - Siddiqui, Sophiya A1 - Treese, Christoph A1 - Schmidt, Franziska A1 - Friedrich, Marie A1 - Keye, Jacqueline A1 - Wan, Jiajia A1 - Qin, Yue A1 - Kühl, Anja A. A1 - Qin, Zhihai A1 - Siegmund, Britta A1 - Glauben, Rainer T1 - Lipid droplet-dependent fatty acid metabolism controls the immune suppressive phenotype of tumor-associated macrophages JF - EMBO molecular medicine N2 - Tumor-associated macrophages (TAMs) promote tumor growth and metastasis by suppressing tumor immune surveillance. Herein, we provide evidence that the immunosuppressive phenotype of TAMs is controlled by long-chain fatty acid metabolism, specifically unsaturated fatty acids, here exemplified by oleate. Consequently, en-route enriched lipid droplets were identified as essential organelles, which represent effective targets for chemical inhibitors to block in vitro polarization of TAMs and tumor growth in vivo. In line, analysis of human tumors revealed that myeloid cells infiltrating colon cancer but not gastric cancer tissue indeed accumulate lipid droplets. Mechanistically, our data indicate that oleate-induced polarization of myeloid cells depends on the mammalian target of the rapamycin pathway. Thus, our findings reveal an alternative therapeutic strategy by targeting the pro-tumoral myeloid cells on a metabolic level. KW - cancer immunotherapy KW - lipid droplets KW - lipid metabolism KW - tumor microenvironment KW - tumor-associated macrophage Y1 - 2019 U6 - https://doi.org/10.15252/emmm.201910698 SN - 1757-4676 SN - 1757-4684 VL - 11 IS - 11 PB - Wiley CY - Hoboken ER -