TY - JOUR A1 - Eigemann, Falk A1 - Hilt, Sabine A1 - Salka, Ivette A1 - Grossart, Hans-Peter T1 - Bacterial community composition associated with freshwater algae species specificity vs. dependency on environmental conditions and source community JF - FEMS microbiology ecology N2 - We studied bacterial associations with the green alga Desmodesmus armatus and the diatom Stephanodiscus minutulus under changing environmental conditions and bacterial source communities, to evaluate whether bacteriaalgae associations are species-specific or more generalized and determined by external factors. Axenic and xenic algae were incubated in situ with and without allelopathically active macrophytes, and in the laboratory with sterile and nonsterile lake water and an allelochemical, tannic acid (TA). Bacterial community composition (BCC) of algae-associated bacteria was analyzed by denaturing gradient gel electrophoresis (DGGE), nonmetric multidimensional scaling, cluster analyses, and sequencing of DGGE bands. BCC of xenic algal cultures of both species were not significantly affected by changes in their environment or bacterial source community, except in the case of TA additions. Species-specific interactions therefore appear to overrule the effects of environmental conditions and source communities. The BCC of xenic and axenic D.armatus cultures subjected to in situ bacterial colonization, however, had lower similarities (ca.55%), indicating that bacterial precolonization is a strong factor for bacteriaalgae associations irrespective of environmental conditions and source community. Our findings emphasize the ecological importance of species-specific bacteriaalgae associations with important repercussions for other processes, such as the remineralization of nutrients, and organic matter dynamics. KW - allelopathy KW - bacteriaalgae associations KW - heterotrophic bacteria KW - species-specific Y1 - 2013 U6 - https://doi.org/10.1111/1574-6941.12022 SN - 0168-6496 VL - 83 IS - 3 SP - 650 EP - 663 PB - Wiley-Blackwell CY - Hoboken ER - TY - GEN A1 - Liaimer, Anton A1 - Jensen, John B. A1 - Dittmann-Thünemann, Elke T1 - A genetic and chemical perspective on symbiotic recruitment of cyanobacteria of the genus Nostoc into the host plant Blasia pusilla L. T2 - Frontiers in microbiology N2 - Liverwort Blasia pusilla L. recruits soil nitrogen-fixing cyanobacteria of genus Nostoc as symbiotic partners. In this work we compared Nostoc community composition inside the plants and in the soil around them from two distant locations in Northern Norway. STRR fingerprinting and 16S rDNA phylogeny reconstruction showed a remarkable local diversity among isolates assigned to several Nostoc clades. An extensive web of negative allelopathic interactions was recorded at an agricultural site, but not at the undisturbed natural site. The cell extracts of the cyanobacteria did not show antimicrobial activities, but four isolates were shown to be cytotoxic to human cells. The secondary metabolite profiles of the isolates were mapped by MALDI-TOF MS, and the most prominent ions were further analyzed by Q-TOF for MS/MS aided identification. Symbiotic isolates produced a great variety of small peptide-like substances, most of which lack any record in the databases. Among identified compounds we found microcystin and nodularin variants toxic to eukaryotic cells. Microcystin producing chemotypes were dominating as symbiotic recruits but not in the free-living community. In addition, we were able to identify several novel aeruginosins and banyaside-like compounds, as well as nostocyclopeptides and nosperin. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 434 KW - cyanobacteria KW - secondary metabolites KW - symbiosis KW - Blasia KW - Nostoc KW - allelopathy Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-407179 ER - TY - JOUR A1 - Liaimer, Anton A1 - Jensen, John B. A1 - Dittmann, Elke T1 - A Genetic and Chemical Perspective on Symbiotic Recruitment of Cyanobacteria of the Genus Nostoc into the Host Plant Blasia pusilla L. JF - Frontiers in microbiology N2 - Liverwort Blasia pusilla L. recruits soil nitrogen-fixing cyanobacteria of genus Nostoc as symbiotic partners. In this work we compared Nostoc community composition inside the plants and in the soil around them from two distant locations in Northern Norway. STRR fingerprinting and 16S rDNA phylogeny reconstruction showed a remarkable local diversity among isolates assigned to several Nostoc clades. An extensive web of negative allelopathic interactions was recorded at an agricultural site, but not at the undisturbed natural site. The cell extracts of the cyanobacteria did not show antimicrobial activities, but four isolates were shown to be cytotoxic to human cells. The secondary metabolite profiles of the isolates were mapped by MALDI-TOF MS, and the most prominent ions were further analyzed by Q-TOF for MS/MS aided identification. Symbiotic isolates produced a great variety of small peptide-like substances, most of which lack any record in the databases. Among identified compounds we found microcystin and nodularin variants toxic to eukaryotic cells. Microcystin producing chemotypes were dominating as symbiotic recruits but not in the free-living community. In addition, we were able to identify several novel aeruginosins and banyaside-like compounds, as well as nostocyclopeptides and nosperin. KW - Cyanobacteria KW - secondary metabolites KW - symbiosis KW - Blasia KW - Nostoc KW - allelopathy Y1 - 2016 U6 - https://doi.org/10.3389/fmicb.2016.01693 SN - 1664-302X VL - 7 SP - 449 EP - 474 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Svanys, Algirdas A1 - Eigemann, Falk A1 - Großart, Hans-Peter A1 - Hilt, Sabine T1 - Microcystins do not necessarily lower the sensitivity of Microcystis aeruginosa to tannic acid JF - FEMS microbiology letters N2 - Different phytoplankton strains have been shown to possess varying sensitivities towards macrophyte allelochemicals, yet the reasons for this are largely unknown. To test whether microcystin (MC) is responsible for strain-specific sensitivities of Microcystis aeruginosa to macrophyte allelochemicals, we compared the sensitivity of 12 MC- and non-MC-producing M. aeruginosa strains, including an MC-deficient mutant and its wild type, to the polyphenolic allelochemical tannic acid (TA). Non-MC-producing strains showed a significantly higher sensitivity to TA than MC-producing strains, both in Chlorophyll a concentrations and quantum yields of photosystem II. In contrast, an MC-deficient mutant displayed a higher fitness against TA compared to its wild type. These results suggest that the resistance of M. aeruginosa to polyphenolic allelochemicals is not primarily related to MCs per se, but to other yet unknown protective mechanisms related to MCs. KW - allelopathy KW - Delta mcyB mutant KW - microcystin KW - Microcystis aeruginosa KW - tannic acid Y1 - 2016 U6 - https://doi.org/10.1093/femsle/fnv227 SN - 0378-1097 SN - 1574-6968 VL - 363 SP - 53 EP - 77 PB - Oxford Univ. Press CY - Oxford ER -