TY - THES A1 - Borghini, Alessia T1 - Melt inclusions in mafic rocks as witnesses of metasomatism in the Bohemian Massif N2 - Orogenic peridotites represent portions of upper subcontinental mantle now incorporated in mountain belts. They often contain layers, lenses and irregular bodies of pyroxenite and eclogite. The origin of this heterogeneity and the nature of these layers is still debated but it is likely to involve processes such as transient melts coming from the crust or the mantle and segregating in magma conduits, crust-mantle interaction, upwelling of the asthenosphere and metasomatism. All these processes occur in the lithospheric mantle and are often related with the subduction of crustal rocks to mantle depths. In fact, during subduction, fluids and melts are released from the slab and can interact with the overlying mantle, making the study of deep melts in this environment crucial to understand mantle heterogeneity and crust-mantle interaction. The aim of this thesis is precisely to better constrain how such processes take place studying directly the melt trapped as primary inclusions in pyroxenites and eclogites. The Bohemian Massif, crystalline core of the Variscan belt, is targeted for these purposes because it contains orogenic peridotites with layers of pyroxenite and eclogite and other mafic rocks enclosed in felsic high pressure and ultra-high pressure crustal rocks. Within this Massif mafic rocks from two areas have been selected: the garnet clinopyroxenite in orogenic peridotite of the Granulitgebirge and the ultra-high pressure eclogite in the diamond-bearing gneisses of the Erzgebirge. In both areas primary melt inclusions were recognized in the garnet, ranging in size between 2-25 µm and with different degrees of crystallization, from glassy to polycrystalline. They have been investigated with Micro Raman spectroscopy and EDS mapping and the mineral assemblage is kumdykolite, phlogopite, quartz, kokchetavite, phase with a main Raman peak at 430 cm-1, phase with a main Raman peak at 412 cm-1, white mica and calcite with some variability in relative abundance depending on the case study. In the Granulitgebirge osumilite and pyroxene are also present, whereas calcite is one of the main phases in the Erzgebirge. The presence of glass and the mineral assemblage in the nanogranitoids suggest that they were former droplets of melt trapped in the garnet while it was growing. Glassy inclusions and re-homogenized nanogranitoids show a silicate melt that is granitic, hydrous, high in alkalis and weakly peraluminous. The melt is also enriched in both case studies in Cs, Pb, Rb, U, Th, Li and B suggesting the involvement of crustal component, i.e. white mica (main carrier of Cs, Pb, Rb, Li and B), and a fluid (Cs, Th and U) in the melt producing reaction. The whole rock in both cases mainly consists of garnet and clinopyroxene with, in Erzgebirge samples, the additional presence of quartz both in the matrix and as a polycrystalline inclusion in the garnet. The latter is interpreted as a quartz pseudomorph after coesite and occurs in the same microstructural position as the melt inclusions. Both rock types show a crustal and subduction zone signature with garnet and clinopyroxene in equilibrium. Melt was likely present during the metamorphic peak of the rock, as it occurs in garnet. Our data suggest that the processes most likely responsible for the formation of the investigated rocks in both areas is a metasomatic reaction between a melt produced in the crust and mafic layers formerly located in the mantle wedge for the Granulitgebirge and in the subducted continental crust itself in the Erzgebirge. Thus metasomatism in the first case took place in the mantle overlying the slab, whereas in the second case metasomatism took place in the continental crust that already contained, before subduction, mafic layers. Moreover, the presence of former coesite in the same microstructural position of the melt inclusions in the Erzgebirge garnets suggest that metasomatism took place at ultra-high pressure conditions. Summarizing, in this thesis we provide new insights into the geodynamic evolution of the Bohemian Massif based on the study of melt inclusions in garnet in two different mafic rock types, combining the direct microstructural and geochemical investigation of the inclusions with the whole-rock and mineral geochemistry. We report for the first time data, directly extracted from natural rocks, on the metasomatic melt responsible for the metasomatism of several areas of the Bohemian Massif. Besides the two locations here investigated, belonging to the Saxothuringian Zone, a signature similar to the investigated melt is clearly visible in pyroxenite and peridotite of the T-7 borehole (again Saxothuringian Zone) and the durbachite suite located in the Moldanubian Zone. N2 - Die Präsenz orogener Peridotite - metamorphosierte Bestanteile des Mantels -, die in Gebirgen auftreten, belegt, dass der Erdmantel an Kontinent-Kontinent-Kollisionen beteiligt sein kann. Solche orogenen Peridotite sind häufig heterogen, da sie Pyroxenit- und Eklogitlagen und Linsen enthalten, d.h. Hochdruckgesteine, die aus Granat und Klinopyroxen bestehen. Die meisten Prozesse, die für diese Heterogenität verantwortlich sind, involvieren Schmelzen, die durch den Mantel migrieren und dabei zu dessen Metasomatose oder zu der Anreicherung von Granat und Klinopyroxen in Adern und Kanälen führen. Ein weiterer Prozess kann auch das Recyceln subduzierter ozeanischer Kruste im Erdmantel sein. Im Allgemeinen finden all diese Prozesse während der Subduktion der Kruste in Manteltiefe statt. Unter diesen Bedingungen stehen die Krustengesteine im direkten Kontakt mit den Mantelgesteinen und die dabei freigesetzten Fluide oder Schmelzen können mit den Peridotiten wechselwirken. Letztere können anschließend von den Krustengesteinen aufgenommen und zur Erdoberfläche exhumiert werden, wo sie untersucht werden können. Diese Arbeit fokussiert sich vor allem auf die Untersuchung der Pyroxenit- und Eklogitbildung sowie auf die Wechselwirkung zwischen Schmelze und Gestein während der Subduktion der Kontinentalkruste in Manteltiefe. Dafür ist das Böhmische Massiv die ideale geologische Umgebung, da es erhebliche Mengen an Pyroxeniten und Eklogiten enthält, die sich in einigen Fällen in orogenen Peridotiten befinden, und die alle in einer ehemals tief subduziertern kontinentalern Kruste eingegliedert wurden. Um die Zielstellung zu erreichen, wurde die Schmelze mit einem neuartigen Ansatz untersucht, wobei diese hier direkt in primären Schmelzeinschlüssen, die im Granat eingeschlossenen sind, untersucht wird. Es wurden zwei Gebiete mit Pyroxeniten und Eklogiten, die Schmelzeinschlüsse enthalten, ausgewählt, ein Pyroxenit aus dem Granulitgebirge und ein Ultrahochdruck-Eklogit aus dem Erzgebirge (Sachsen, Deutschland). Die Einschlüsse bestehen aus einer granitischen, wasserhaltigen Schmelze krustaler Herkunft. Das Auftreten der im Granat unregelmäßig verteilten Einschlüsse bestätigt das Vorhandensein von Schmelze während der Peakmetamorphose. Da die Schmelzen in beiden Fällen ähnlich sind, schlussfolgern wir daraus, dass beide Gesteinsarten durch metasomatische Prozesse infolge der Wechselwirkung von silikatreicher Schmelze und mafischen Lagen gebildete wurden. Im Granulitgebirge ging die Schmelze eine Wechselwirkung mit mafischen Lagen im Mantel ein und erst später wurde der Wirtsperidotit einschließlich der neugebildeten Pyroxenit- und Eklogitlagen in die subduzierte Kruste eingebaut. Im Fall der Pyroxenite und Eklogite des Erzgebirges fand die Metasomatose stattdessen in der kontinentalen Kruste statt. Hier ging die Schmelze eine Wechselwirkung mit mafischen Lagen ein, die sich bereits vor der Subduktion in der Kruste befunden hatten. Im letzteren Fall belegt der Hinweis auf ehemaligen Coesit , d. h. auf ein Mineral, das Tiefen >95 km anzeigt, welches anwesend war während der Metasomatose, dass die Prozesse in größeren Tiefen stattfanden als im Granulitgebirge. T2 - Schmelzeinschlüsse in mafischen Gesteinen als Zeugen von Metasomatose im Böhmischen Massiv KW - Petrology KW - Petrologie KW - Metamorphism KW - Melt inclusions KW - Metasomatism KW - Metamorphose KW - Schmelzeinschlüsse KW - Metasomatose Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-473639 ER - TY - JOUR A1 - Cetinkaplan, Mete A1 - Pourteau, Amaury A1 - Candan, Osman A1 - Koralay, O. Ersin A1 - Oberhänsli, Roland A1 - Okay, Aral I. A1 - Chen, Fukun A1 - Kozlu, Huseyin A1 - Sengun, Firat T1 - P-T-t evolution of eclogite/blueschist facies metamorphism in Alanya Massif: time and space relations with HP event in Bitlis Massif, Turkey JF - International journal of earth sciences N2 - The Alanya Massif, which is located to the south of central Taurides in Turkey, presents a typical nappe pile consisting of thrust sheets with contrasting metamorphic histories. In two thrust sheets, Sugozu and GundogmuAY nappes, HP metamorphism under eclogite (550-567 A degrees C/14-18 kbar) and blueschist facies (435-480 A degrees C/11-13 kbar) conditions have been recognized, respectively. Whereas the rest of the Massif underwent MP metamorphism under greenschist to amphibolite facies (525-555 A degrees C/6.5-7.5 kbar) conditions. Eclogite facies metamorphism in Sugozu nappe, which consists of homogeneous garnet-glaucophane-phengite schists with eclogite lenses is dated at 84.8 +/- A 0.8, 84.7 +/- A 1.5 and 82 +/- A 3 Ma (Santonian-Campanian) by Ar-40/Ar-39 phengite, U/Pb zircon and rutile dating methods, respectively. Similarly, phengites in GundogmuAY nappe representing an accretionary complex yield 82-80 Ma (Campanian) ages for blueschist facies metamorphism. During the exhumation, the retrograde overprint of the HP units under greenschist-amphibolite facies conditions and tectonic juxtaposition with the Barrovian units occurred during Campanian (75-78 Ma). Petrological and geochronological data clearly indicate a similar Late Cretaceous tectonometamorphic evolution for both Alanya (84-75 Ma) and Bitlis (84-72 Ma) Massifs. They form part of a single continental sliver (Alanya-Bitlis microcontinent), which was rifted from the southern part of the Anatolide-Tauride platform. The P-T-t coherence between two Massifs suggests that both Massifs have been derived from the closure of the same ocean (Alanya-Bitlis Ocean) located to the south of the Anatolide-Tauride block by a northward subduction. The boundary separating the autochthonous Tauride platform to the north from both the Alanya and Bitlis Massifs to the south represents a suture zone, the Pamphylian-Alanya-Bitlis suture. KW - Tauride KW - Eclogite KW - Alanya KW - Blueschist KW - Metamorphism Y1 - 2016 U6 - https://doi.org/10.1007/s00531-014-1092-8 SN - 1437-3254 SN - 1437-3262 VL - 105 SP - 247 EP - 281 PB - Springer CY - New York ER - TY - JOUR A1 - Duesterhoeft, Erik A1 - Quinteros, Javier A1 - Oberhänsli, Roland A1 - Bousquet, Romain A1 - de Capitani, Christian T1 - Relative impact of mantle densification and eclogitization of slabs on subduction dynamics: A numerical thermodynamic/thermokinematic investigation of metamorphic density evolution JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - Understanding the relationships between density and spatio-thermal variations at convergent plate boundaries is important for deciphering the present-day dynamics and evolution of subduction zones. In particular, the interaction between densification due to mineralogical phase transitions and slab pull forces is subject to ongoing investigations. We have developed a two-dimensional subduction zone model that is based on thermodynamic equilibrium assemblage calculations and includes the effects of melting processes on the density distribution in the lithosphere. Our model calculates the "metamorphic density" of rocks as a function of pressure, temperature and chemical composition in a subduction zone down to 250 km. We have used this model to show how the hydration, dehydration, partial melting and fractionation processes of rocks all influence the metamorphic density and greatly depend on the temperature field within the subduction system. These processes are largely neglected by other approaches that reproduce the density distribution within this complex tectonic setting. Our model demonstrates that the initiation of edogitization (i.e., when crustal rocks reach higher densities than the ambient mantle) of the slab is not the only significant process that makes the descending slab denser and generates the slab pull force. Instead, the densification of the lithospheric mantle of the sinking slab starts earlier than eclogitization and contributes significantly to slab pull in the early stages of subduction. Accordingly, the complex metamorphic structure of the slab and the mantle wedge has an important impact on the development of subduction zones. (C) 2014 Elsevier B.V. All rights reserved. KW - Density KW - Melt KW - Metamorphism KW - Subduction KW - Thermodynamic modeling KW - Thermo-mechanical modeling Y1 - 2014 U6 - https://doi.org/10.1016/j.tecto.2014.09.009 SN - 0040-1951 SN - 1879-3266 VL - 637 SP - 20 EP - 29 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Loprieno, Andrea A1 - Bousquet, Romain A1 - Bucher, Stefan A1 - Ceriani, Stefano A1 - Dalla Torre, Florian H. A1 - Fügenschuh, Bernhard A1 - Schmid, Stefan M. T1 - The valais units in Savoy (France) a key area for understanding the palaeogeography and the tectonic evolution of the Western Alps JF - International journal of earth sciences N2 - The Valais units in Savoy (Zone des BrSches de Tarentaise) have been re-mapped in great detail and are subject of combined stratigraphic, structural and petrological investigations summarized in this contribution. The sediments and rare relics of basement, together with Cretaceous age mafic and ultramafic rocks of the Valais palaeogeographical domain, represent the heavily deformed relics of the former distal European margin (External Valais units) and an ocean-continent transition (Internal Valais unit or Versoyen unit) that formed during rifting. This rifting led to the opening of the Valais ocean, a northern branch of the Alpine Tethys. Post-rift sediments referred to as "Valais trilogy" stratigraphically overlie both External and Internal Valais successions above an angular unconformity formed in Barremian to Aptian times, providing robust evidence for the timing of the opening of the Valais ocean. The Valais units in Savoy are part of a second and more external mid-Eocene high-pressure belt in the Alps that sutured the Brian double dagger onnais microcontinent to Europe. Top-N D1-deformation led to the formation of a nappe stack that emplaced the largely eclogite-facies Internal Valais unit (Versoyen) onto blueschist-facies External Valais units. The latter originally consisted of, from internal to external, the Petit St. Bernard unit, the Roc de l'Enfer unit, the MoA >> tiers unit and the Quermoz unit. Ongoing top-N D2-thrusting and folding substantially modified this nappe stack. Post 35 Ma D3 folding led to relatively minor modifications of the nappe stack within the Valais units but was associated with substantial top-WNW thrusting of the Valais units over the Dauphinois units along the Roselend thrust during W-directed indentation of the Adria block contributing to the formation of the arc of the Western Alps. KW - Alpine geology KW - Valais ocean KW - Palaeogeography KW - Structural geology KW - Tectonics KW - Metamorphism Y1 - 2011 U6 - https://doi.org/10.1007/s00531-010-0595-1 SN - 1437-3254 VL - 100 IS - 5 SP - 963 EP - 992 PB - Springer CY - New York ER -