TY - JOUR A1 - Menzel, Ralf A1 - Heuer, Axel A1 - Puhlmann, Dirk A1 - Dechoum, K. A1 - Hillery, M. A1 - Spaehn, M. J. A. A1 - Schleich, W. P. T1 - A two-photon double-slit experiment JF - Journal of modern optics N2 - We employ a photon pair created by spontaneous parametric down conversion (SPDC) where the pump laser is in the TEM01 mode to perform a Young's double-slit experiment. The signal photon illuminates the two slits and displays interference fringes in the far-field while the idler photon measured in the near-field in coincidence with the signal photon provides us with which-slit' information. We explain the results of these experiments with the help of an analytical expression for the second-order correlation function derived from an elementary model of SPDC. Our experiment emphasizes the crucial role of the mode function in the quantum theory of radiation. KW - complementarity KW - wave-particle dualism KW - Young's double-slit experiment KW - spontaneous parametric down conversion KW - TEM01 mode Y1 - 2013 U6 - https://doi.org/10.1080/09500340.2012.746400 SN - 0950-0340 VL - 60 IS - 1 SP - 86 EP - 94 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - GEN A1 - Menzel, Ralf A1 - Heuer, Axel A1 - Milonni, Peter W. T1 - Entanglement, complementarity, and vacuum fields in spontaneous parametric down-conversion T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Using two crystals for spontaneous parametric down-conversion in a parallel setup, we observe two-photon interference with high visibility. The high visibility is consistent with complementarity and the absence of which-path information. The observations are explained as the effects of entanglement or equivalently in terms of interfering probability amplitudes and also by the calculation of a second-order field correlation function in the Heisenberg picture. The latter approach brings out explicitly the role of the vacuum fields in the down-conversion at the crystals and in the photon coincidence counting. For comparison, we show that the Hong–Ou–Mandel dip can be explained by the same approach in which the role of the vacuum signal and idler fields, as opposed to entanglement involving vacuum states, is emphasized. We discuss the fundamental limitations of a theory in which these vacuum fields are treated as classical, stochastic fields. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1077 KW - complementarity KW - vacuum fields KW - entanglement KW - Hong-Ou-Mandel effect KW - spontaneous parametric down-conversion Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-473542 SN - 1866-8372 IS - 1077 ER - TY - JOUR A1 - Menzel, Ralf A1 - Heuer, Axel A1 - Milonni, Peter W. T1 - Entanglement, Complementarity, and Vacuum Fields in Spontaneous Parametric Down-Conversion JF - Atoms N2 - Using two crystals for spontaneous parametric down-conversion in a parallel setup, we observe two-photon interference with high visibility. The high visibility is consistent with complementarity and the absence of which-path information. The observations are explained as the effects of entanglement or equivalently in terms of interfering probability amplitudes and also by the calculation of a second-order field correlation function in the Heisenberg picture. The latter approach brings out explicitly the role of the vacuum fields in the down-conversion at the crystals and in the photon coincidence counting. For comparison, we show that the Hong-Ou-Mandel dip can be explained by the same approach in which the role of the vacuum signal and idler fields, as opposed to entanglement involving vacuum states, is emphasized. We discuss the fundamental limitations of a theory in which these vacuum fields are treated as classical, stochastic fields. KW - complementarity KW - vacuum fields KW - entanglement KW - Hong-Ou-Mandel effect KW - spontaneous parametric down-conversion Y1 - 2019 U6 - https://doi.org/10.3390/atoms7010027 SN - 2218-2004 VL - 7 IS - 1 PB - MDPI CY - Basel ER -